K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2020

a/ Do \(d_1//\Delta\Rightarrow d_1\) nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình d1:

\(1\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow x-2y+1=0\)

b/ Do \(d_2\perp\Delta\Rightarrow d_2\) nhận \(\left(2;1\right)\) là 1 vtpt

Phương trình d2:

\(2\left(x+1\right)+1\left(y-2\right)=0\Leftrightarrow2x+y=0\)

c/ \(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow AB\) nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình AB:

\(1\left(x-1\right)+2\left(x-1\right)=0\Leftrightarrow x+2y-3=0\)

I thuộc Δ nên I(-2y+2;y)

Theo đề, ta có: IA=IB

=>IA^2=IB^2

=>(-2y+2-1)^2+(y+1)^2=(-2y+2-4)^2+(y-2)^2

=>(2y-1)^2+(y+1)^2=(2y+2)^2+(y-2)^2

=>4y^2-4y+1+y^2+2y+1=4y^2+8y+4+y^2-4y+4

=>-2y+2=4y+8

=>-6y=-6

=>y=1

=>I(0;1)

I(0;1); A(1;-1)

=>IA=căn (1-0)^2+(-1-1)^2=căn 5

Phương trình của (C) là:
(x-0)^2+(y-1)^2=R^2=5

NV
25 tháng 7 2021

Bài này cần có 1 điều gì đó đặc biệt trong các đường - mặt để giải được (nếu ko chỉ dựa trên khoảng cách thông thường thì gần như bất lực). Thường khoảng cách dính tới đường vuông góc chung, thử mò dựa trên nó :)

Bây giờ chúng ta đi tìm đường vuông góc chung d3 của d1; d2, và hi vọng rằng giao điểm C của d3 với (P) sẽ là 1 điểm nằm giữa A và B với A và giao của d1 và d3, B là giao của d2 và d3 (nằm giữa chứ ko cần trung điểm), thường ý tưởng của người ra đề sẽ là như vậy. Khi đó điểm M sẽ trùng C. Còn C không nằm giữa A và B mà nằm ngoài thì đầu hàng cho đỡ mất thời gian (khi đó việc tìm cực trị sẽ rất lâu).

Quy pt d1 và d2 về dạng tham số, gọi A là 1 điểm thuộc d1 thì \(A\left(t+1;t+2;2t\right)\) và B là 1 điểm thuộc d2 thì \(B\left(t'+1;2t'+3;3t'+4\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(t'-t;2t'-t+1;3t'-2t+4\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{u_{d1}}=0\\\overrightarrow{AB}.\overrightarrow{u_{d2}}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t'-t+2t'-t+1+2\left(3t'-2t+4\right)=0\\t'-t+2\left(2t'-t+1\right)+3\left(3t'-2t+4\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}t=0\\t'=-1\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}A\left(1;2;0\right)\\B\left(0;1;1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BA}=\left(1;1-1\right)\)

Phương trình AB hay d3: \(\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=-t\end{matrix}\right.\)

Giao điểm C của d3 và (P): \(2\left(1+t\right)+2\left(2+t\right)-2t-5=0\)

\(\Rightarrow C\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)

Ủa, ko chỉ nằm giữa luôn, mà người ta cho hẳn trung điểm cho cẩn thận :)

Vậy \(M\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)

25 tháng 7 2021

Bài giải chi tiết quá ạ :)) Em cảm ơn nhiều ạ :vv

13 tháng 6 2018

Chọn B

Phương trình (S): xy+ z+ 4x - 6y + m = 0 là phương trình mặt cầu <=> m < 13

Khi đó (S) có tọa độ tâm I (-2;3;0) bán kính 

Gọi M (x;y;z) là điểm bất kỳ thuộc Δ.

Tọa độ M thỏa mãn hệ: 

Đặt y = t ta có: 

=> Δ có phương trình tham số: 

Δ đi qua điểm N (-2; 0; -3) và có vectơ chỉ phương 

 

Giả sử mặt cầu (S) cắt Δ tại hai điểm phân biệt A, B sao cho AB = 8Gọi (C) là đường tròn lớn chứa đường thẳng ΔKhi đó ICR- AC= 13 - m - 4= -m - 3

N (0;-3;-3)

Vậy mặt cầu (S) cắt Δ tại hai điểm phân biệt A, B sao cho AB = 8

<=> -m - 3 = 9 <=> m = -12

20 tháng 12 2019

Đáp án D

Gọi I là giao điểm của hai đường thẳng d1; d2 . Tọa độ điểm I là nghiệm của hệ:

Lấy điểm  m 1 ; 0 ∈ d 1  . Đường thẳng qua M và vuông góc với d2 có phương trình: 3x + y-3= 0

Gọi  H = ∆ ∩ d 2  suy ra tọa độ điểm H là nghiệm của hệ:

Phương trình đường thẳng

có dạng:

hay x-3y + 3= 0

NV
24 tháng 2 2021

1. Gọi d' là đường thẳng qua A và vuông góc d

\(\Rightarrow\) d' nhận (1;3) là 1 vtpt

Phương trình d':

\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)

H là giao điểm d và d' nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)

2.

Do A' đối xứng A qua d nên H là trung điểm AA'

\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)

\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)

NV
24 tháng 2 2021

3.

Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)

Lấy điểm \(C\left(0;4\right)\) thuộc d

Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:

\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)

Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)

Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'

\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)

Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':

\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)

7 tháng 7 2019

Đáp án A

14 tháng 10 2018

Đáp án A

15 tháng 8 2018

ĐÁP ÁN B.

Do C nằm trên đường thẳng ∆: x – 2y + 3 = 0 nên ta gọi tọa độ C là C(2y – 3; y).

Mà  A B ​ =    ( − 2 + ​ 4 ) 2 + ​   ( 1 + ​ 1 ) 2 = 2 2

 Phương trình AB: qua A( - 4; -1) và nhận VTCP A B →    ( 2 ; 2 )  nên có VTPT là:  n →    ( 1 ;    − 1 ) :

1(  x+ 4) – 1 ( y + 1) = 0  hay x – y + 3 = 0

d ( ​​​ C ;     A B ) = ​​   2 y − 3 − y + ​ 3 2 = y 2

 Theo đầu bài ta có:

40 = S = 1 2 . A B . d ( C ; ​​    A B ) = 1 2 .    2 2 . y 2 ⇔ y    = 40    ⇔ y =    ± 40