K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2020

a/ Do \(d_1//\Delta\Rightarrow d_1\) nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình d1:

\(1\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow x-2y+1=0\)

b/ Do \(d_2\perp\Delta\Rightarrow d_2\) nhận \(\left(2;1\right)\) là 1 vtpt

Phương trình d2:

\(2\left(x+1\right)+1\left(y-2\right)=0\Leftrightarrow2x+y=0\)

c/ \(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow AB\) nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình AB:

\(1\left(x-1\right)+2\left(x-1\right)=0\Leftrightarrow x+2y-3=0\)

2 tháng 5 2023

loading...  d lâu r ko làm ko nhớ -)(

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

3 tháng 12 2021

Gọi các đồ thị có CT chung là \(ax+b\)

\(a,\Leftrightarrow\left\{{}\begin{matrix}-a+b=-5\\a=0;b\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-5\end{matrix}\right.\Leftrightarrow\left(d_1\right):y=-5\\ b,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\a=2;b\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\Leftrightarrow\left(d_2\right):y=2x+7\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=-2x+3\\ d,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=0\end{matrix}\right.\Leftrightarrow\left(d_4\right):y=-5x\)

3 tháng 12 2021

câu c bạn giải kỹ hơn đc ko 

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \({d_1}\) song song với đường thẳng \({d_2}:x + 3y + 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_2}\) làm vectơ pháp tuyến là \(\overrightarrow n  = \left( {1;3} \right)\)

\({d_1}\) đi qua điểm \(A(2;3)\) nên ta có phương trình tổng quát

          \(\left( {x - 2} \right) + 3.\left( {y - 3} \right) = 0 \Leftrightarrow x + 3y - 11 = 0\)

b) \({d_1}\) vuông góc với đường thẳng \({d_3}:3x - y + 1 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_3}\) làm vectơ chỉ phương là \(\overrightarrow u  = \left( {3; - 1} \right)\)

\({d_1}\) đi qua điểm \(B(4; - 1)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x = 4 + 3t\\y =  - 1 - t\end{array} \right.\)

10 tháng 3 2022

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)

a: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0

Vì (d)//3x-2y-5=0 nên (d) có VTPT là (3;-2)

mà (d) đi qua A(0;2) 

nên phương trình đường thẳng (d) là:

3(x-0)+(-2)(y-2)=0

=>3x-2y+4=0

b: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0

Vì (d)\(\perp\)(3x-2y-5=0) nên (d) nhận \(\overrightarrow{u}=\left(3;-2\right)\) làm vecto chỉ phương

=>VTPT của (d) là (2;3)

mà (d) đi qua A(0;2)

nên phương trình đường thẳng (d) là:

2(x-0)+3(y-2)=0

=>2x+3y-6=0

c: Đặt (d1): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)

=>VTCP là (-2;-5)=(2;5)

=>VTPT là (-5;2)

Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm

Vì (d)//(d1) nên (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến

Vì (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến và (d) đi qua B(-1;5) nên phương trình đường thẳng (d) là:

-5(x+1)+2(y-5)=0

=>-5x-5+2y-10=0

=>-5x+2y-15=0

d: Đặt (d2): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)

=>VTCP là (-2;-5)=(2;5)

Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm

Vì (d)\(\perp\)(d2) và \(\overrightarrow{u}=\left(2;5\right)\) là vecto chỉ phương của (d2) nên (d) nhận \(\overrightarrow{u}=\left(2;5\right)\) làm vecto pháp tuyến

mà (d) đi qua B(-1;5) 

nên phương trình đường thẳng (d) là:

2(x+1)+5(y-5)=0

=>2x+2+5y-25=0

=>2x+5y-23=0