Cho tam giác ABC vuông tại góc A có góc B > 45o
1, So sánh góc B và góc C
2, So sánh các cạnh của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Tính góc ADB và góc BDC: Gọi góc ADB = x, góc BDC = y. Ta có thể sử dụng các quy tắc góc chắn cung và góc nội tiếp để tính góc như sau:
b. So sánh các cạnh của tam giác ABD: Để so sánh các cạnh của tam giác ABD, ta cần tính độ dài các cạnh. Theo định lý Pythagoras trong tam giác vuông ABC, ta có:
c. So sánh các góc của tam giác BDC: Trong tam giác BDC, ta đã tính được góc BDC = 45 độ (như ở câu a). Do tam giác BDC cân tại B, nên góc CBD cũng bằng 45 độ. Vì vậy, hai góc của tam giác BDC bằng nhau và bằng 45 độ.
a. Tính góc ADB và góc BDC: Gọi góc ADB = x, góc BDC = y. Ta có thể sử dụng các quy tắc góc chắn cung và góc nội tiếp để tính góc như sau:
b. So sánh các cạnh của tam giác ABD: Để so sánh các cạnh của tam giác ABD, ta cần tính độ dài các cạnh. Theo định lý Pythagoras trong tam giác vuông ABC, ta có:
c. So sánh các góc của tam giác BDC: Trong tam giác BDC, ta đã tính được góc BDC = 45 độ (như ở câu a). Do tam giác BDC cân tại B, nên góc CBD cũng bằng 45 độ. Vì vậy, hai góc của tam giác BDC bằng nhau và bằng 45 độ.
\(\text{1)Vì }\Delta ABC\text{ có }A\text{ là góc tù}\)
\(\Rightarrow A\text{ lớn nhất}\)
\(\text{Vậy }\widehat{A}>\widehat{B}>\widehat{C}\)
\(\Rightarrow BC>AB>AC\)
\(\text{2)Vì }\Delta ABC\text{ vuông tại }A\)
\(\Rightarrow\widehat{A}=90^0\)
\(\text{Xét }\Delta ABK\text{ có:}\)
\(\widehat{A}=90^0\left(cmt\right)\)
\(\Rightarrow\widehat{A}>\widehat{BKA}\)
\(\Rightarrow BK>AB\)
\(\text{Ta có:}\widehat{BKC}=\widehat{ABK}+\widehat{A}\left(\widehat{BKC\text{ là góc ngoài }\Delta}ABD\right)\)
\(\Rightarrow\widehat{BKC}>\widehat{A}\)
\(\Rightarrow\widehat{BKC}>90^0\)
\(\text{Xét }\Delta BKC\text{ có:}\)
\(\widehat{BKC}>90^0\)
\(\Rightarrow\widehat{BKC}>\widehat{C}\)
\(\Rightarrow BC>BK\text{(quan hệ giữa cạnh và góc đối diện trong tam giác)}\)
1: Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
Bài 3:
a: Xét ΔAFC vuôngtại F và ΔAED vuông tại E có
AC=AD
góc FAC=góc EAD
=>ΔAFC=ΔAED
=>AF=AE
=>A là trung điểm cua EF
b: DE vuông góc AB
CF vuông góc AB
=>DE//CF
c: Xét tứ giác CFDE có
CF//DE
CF=DE
=>CFDE là hình bình hành
=>CE//DF
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
a, Áp dụng định lý tổng 3 góc của tam giác vào tam giác ABC có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow100^0+20^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-100^0-20^0=60^0\)
\(\Rightarrow\widehat{A}>\widehat{C}>\widehat{B}\)
Áp dụng quan hệ giữa cạnh và góc đối diện \(\Rightarrow BC>AB>AC\)
b) Vì AB>AC nên HB>HC(theo quan hệ giữa đường xiên và hình chiếu)
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
1. Do tam giác ABC vuông tại A nên:
\(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-90^o=90^o\)
Mà \(\widehat{B}>45^o\Leftrightarrow\widehat{C}< 45^o\)
\(\Rightarrow\widehat{C}< 45^o< \widehat{B}\)
Vậy...
2.Áp dụng mối quan hệ giữa cạnh và góc trong tam giác và từ phần 1, ta thấy:
\(\widehat{C}< \widehat{B}< \widehat{A}\Leftrightarrow AB< AC< BC\)
Vậy...
1, ΔABC vuông tại A (gt)
=> ^B + ^C = 90
CÓ ^B > 45
=> ^B > ^C
2, xét ΔABC có : ^A > ^B > ^C
=> BC > AC > AB (Định lí)