K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

a/ ta có: BEC;BFC là 2 góc nội tiếp chắn nửa đường tròn đường kính BC

=> \(\widehat{BEC}=\widehat{BFC}=90^o\)

hay \(CE\perp AB;BF\perp AC\)

tam giác ABC có đường cao CE;BF cắt nhau tại H

=> H là trực tâm của tam giác ABC

=> AH vuông góc với BC

hay HN vuông góc với BC

tứ giác HNCF có: \(\widehat{HNC}+\widehat{HFC}=180^o\)

mà 2 góc này ở vị trí đối nhau

=> tứ giác HFCN nội tiếp(đpcm)

b/ theo phần a ta có: tứ giác HFCN nội tiếp

=>\(\widehat{FHN}+\widehat{FCN}=180^o\Leftrightarrow\widehat{FCN}=180^o-\widehat{FHN\left(1\right)}\)

Ta lại có: góc FHN + góc FHA =180o(2 góc kề bù)

=> góc FHA=180o- góc FHN(2)

từ (1) và (2) ta có : góc FHA= góc FCN

Hay góc AHF= góc ACB(đpcm)

góc BFC=góc BEC=1/2*sđ cung BC=90 độ

=>BF vuông góc AC,CE vuông góc AB

Xét ΔABC có

BF,CE là đường cao

BF cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC tại N

góc HNC+góc HFC=180 độ

=>HNCF nội tiếp

a) Xét (O) có 

\(\widehat{BEC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BEC}=90^0\)(Hệ quả góc nội tiếp)

Xét (O) có

\(\widehat{BFC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BFC}=90^0\)(Hệ quả góc nội tiếp)

Xét tứ giác BEFC có 

\(\widehat{BEC}=\widehat{BFC}\left(=90^0\right)\)

\(\widehat{BEC}\) và \(\widehat{BFC}\) là hai góc cùng nhìn cạnh BC

Do đó: BEFC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: góc BEC=góc BDC=1/2*180=90 độ

=>CE vuông góc AB, BD vuông góc AC

góc AEH+góc ADH=180 độ

=>AEHD nội tiếp

b: góc EFH=góc ABD

góc DFH=góc ACE
mà góc ABD=góc ACE

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD

c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO

OH vuông góc MN

=>MN là đường kính của (H)

=>HM=HN

26 tháng 10 2023

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)AB

Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>BF\(\perp\)AC

XétΔABC có

CE,BF là đường cao

CE cắt BF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có

\(\widehat{A}\) chung

Do đó: ΔAEC ~ΔAFB

=>\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\)

=>\(AE\cdot AB=AC\cdot AF;\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

c: Xét ΔAEF và ΔACB có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF~ΔACB

=>\(\widehat{AEF}=\widehat{ACB}\)

d: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=180^0\)

=>AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn

2 tháng 2 2022

bài này mới chữa trên lớp =))

2 tháng 2 2022

r làm đi =)