Cho n \(\in\)N*: Chứng minh : 7n+2+82n+1 chia hết cho 57
( Giúp với)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
Ta thấy
n(n + 1)(n + 2) là ba số tự nhiên liên tiếp
Ta có nhận xét:
Tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
Tổng của hai số tự nhiên liên tiếp luôn chia hết cho 2
=> Tích của ba số tự nhiên liên tiếp luôn chia hết cho 1.2.3 = 6
=> đpcm
Với n là số nguyên
+ Ta thấy: \(n\) và \(n+1\) là 2 số nguyên liên tiếp
\(\rightarrow\) Có ít nhất 1 số chia hết cho 2
\(n.\left(n+1\right)⋮2\)
+ Ta thấy: \(n,n+1\) và \(n+2\) là 3 số nguyên liên tiếp
\(\rightarrow\)Có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3
Mà \(\left(2;3\right)=1\)
\(\rightarrow n.\left(n+1\right).\left(n+2\right)⋮2.3\)
hay \(n.\left(n+1\right).\left(n+2\right)⋮6\)
+ Ta thấy:\(n\) và \(n+1\) là 2 số nguyên liên tiếp
\(\rightarrow\) Có ít nhất 1 số chia hết cho 2
\(\rightarrow n.\left(n+1\right).\left(2n+1\right)⋮2\)
Câu a)
Ta có: \(n\left(n+1\right)=n^2+n\)
TH1: Khi n là số chẵn
Khi n là số chẵn thì \(n^2\)cũng là số chẵn
Suy ra \(n^2+n\)chia hết cho 2
TH2: khi n là số lẻ
Khi n là số lẻ thì \(n^2\)cũng là số lẻ
Suy ra \(n^2+n\)chia hết cho 2
Vậy .................
Cấu dưới tương tự
Làm biếng :3
a; (n + 10)(n + 15)
+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
+ Nếu n là số lẻ ta có: n + 15 là số chẵn
⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
Từ những lập luận trên ta có:
A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
+ Với n =1
=> 71+2 +82.1+1 = 73 +83 = 855 =57.15 chia hết cho 57
+ Giải sử Đúng với n =k
=> 7k+2 + 82k+1 chia hết cho 57 (1)
+ Ta chứng minh Đúng với n =k +1
=> 7n+2 +82n+1 = 7k+1+2 +82(k+1)+1 = 7. 7k+2 + 82 . 82k+1 = 7( 7k+2 + 82k+1 ) + 57.82k+1
Mà theo (1) ; 7k+2 + 82k+1 chia hết cho 57 ; 57.82k+1 chia hết cho 57
=> 7n+2 +82n+1 chia hết cho 57