Tính:
a)12+22+32+...+20202
b)13+23+33+...+20203
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
15) $|-18| + (-12)=18-12=6$
16) $17+ |-33|=17+33=50$
17) $(– 20) + |-88|=-20+88=68$
18) $|-3| + |5|=3+5=8$
19) $|-37| + |15|=37+15=52$
20) $|-37| + (-|15|)=37-15=22$
21) $(-|-32|) + |5| 22)(-|-22|)+ (-|16|)=-32+5.22-22=-32+4.22=-32+88=56$
23) $(-23) + 13 + ( - 17) + 57=-23+13-17=-40+13=-23$
24) $14 + 6 + (-9) + (-14)=14+6-9-14=6-9=-3$
25) $(-123) +|-13|+ (-7)=-123+13-7=-110-7=-117$
26) $|0|+|45|+(-|-455)|+|-796|=0+45-455+796=-410+796=386$
â,Đặt A là tên bthuc
A\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+2020\left(2021-1\right)\)
\(=\left(1.2+2.3+3.4+...+2020.2021\right)-\left(1+2+3+...+2020\right)\)
Đặt B = 1.2+2.3+...+2020.2021
\(3B=1.2.3+2.3.3+...+2020.2021.3\)
=\(1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+2020.2021.\left(2022-2019\right)\)
\(=\left(1.2.3+2.3.4+...+2020.2021.2022\right)-\left(0.1.2+1.2.3+...+2019.2020.2021\right)\)
\(=2020.2021.2022-0.1.2=2020.2021.2022\)
=>\(B=\frac{2020.2021.2022}{3}\)
=>\(A=\frac{2020.2021.2022}{3}-\frac{2020.2021}{2}=2020.2021\left(\frac{2022}{3}-\frac{1}{2}\right)=\frac{2020.2021.4041}{6}\)
b,Đặt tên bthuc là M
Ta có: \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
=> \(1^3-1=0.1.2\)
\(2^3=1.2.3\)
.......
\(2020^3-2020=2019.2020.2021\)
=> \(M=0.1.2+1.2.3+2.3.4+...+2019.2020.2021+\left(1+2+...2020\right)\)
Đặt N=1.2.3+2.3.4+...+2019.2020.2021
\(4N=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+...+2019.2020.2021\left(2022-2018\right)\)
=\(\left(1.2.3.4+2.3.4.5+...+2019.2020.2021.2022\right)\)-\(\left(0.1.2.3+1.2.3.4+...+2018.2019.2020.2021\right)\)
\(=2019.2020.2021.2022-0.1.2.3=2019.2020.2021.2022\)
=>\(N=\frac{2019.2020.2021.2022}{4}\)
=>\(M=\frac{2019.2020.2021.2022}{4}+\frac{2020.2021}{2}=\frac{2019.2020.2021.2022+2.2020.2021}{4}\)
\(=\frac{2020.2021\left(2019.2022+2\right)}{4}=\frac{2020.2021.\left(2019.2022-2019+2022-1\right)}{4}\)
\(=\frac{2020.2021.\left(2019+1\right)\left(2022-1\right)}{4}=\frac{2020^2.2021^2}{4}=\left(1010.2021\right)^2\)