K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

a) \(x^2-5x+6=0\)

\(=>x^2-5x=-6\)

\(=>x\left(x-5\right)=-6\)

\(=>\orbr{\begin{cases}x=0\\x-5=0\end{cases}=>\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)

Vậy x = { 0 ; 5 }

1 tháng 3 2020

a) \(x^2-5x+6=0\)

=>\(x^2-5x+\frac{25}{4}-\frac{1}{4}=0\)

=>\(\left(x-\frac{5}{2}\right)^2=\frac{1}{4}\)

=>\(\orbr{\begin{cases}x-\frac{5}{2}=\frac{1}{2}\\x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\)

=>\(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

9 tháng 1 2024

loading...

21 tháng 10 2023

\(x^2-6y^2=1\)
⇒ \(x^2-1=6y^2\)
⇒ \(y^2=\dfrac{x^2-1}{6}\)
Nhận thấy y2 ∈ Ư của x2 - 1⋮6
⇒ y2 là số chẵn
Mà y là số nguyên tố → y = 2
Thay vào, ta có:
\(x^2-1=4\cdot6=24\)
⇒ \(x^2=25\) → x = 5
Vậy x=5 ; y=2
xin tích
 

18 tháng 10 2023

Để giải phương trình $x^2 - 6y^2 = 1$ với $x, y$ là số nguyên tố, ta sử dụng phương pháp giải bằng phương pháp Pell như sau: Phương trình có dạng $x^2 - 6y^2 = 1$, tương đương với phương trình $x^2 - 6y^2 - 1 = 0$. Ta cần tìm nghiệm nguyên của phương trình này, có dạng $(x, y)$. Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 7, y_1 = 2$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên. $x_1 = 7, y_1 = 2$ $x_2 = 47, y_2 = 14$ $x_3 = 337, y_3 = 100$ $x_4 = 2387, y_4 = 710$ $x_5 = 16807, y_5 = 3982$ Vậy $(x, y) = (16807, 3982)$ là một nghiệm của phương trình $x^2 - 6y^2 = 1$, với $x$ và $y$ đều là số nguyên tố.

18 tháng 10 2023

cop

18 tháng 2 2024

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

13 tháng 12 2024

3x + 9xy - 6y
 

 

30 tháng 11 2023

X=5                 Y=2

           Thử lại :

    52-6.22=25-24=1

                 Vậy X=5 và Y=2

1 tháng 12 2023

\(x^2\) - 6y2 = 1

\(x^2\) - 1 = 6y2

(\(x\) - 1).(\(x\) + 1) = 6.y2

vì \(x\); y là đều số nguyên tố nên 

\(x-1\) = 6; y2 = \(x\) + 1

hoặc \(x\) + 1 = 6; y2 = \(x\) - 1

TH1: \(x\) - 1= 6 ⇒ \(x\) = 6 + 1 ⇒ \(x\) = 7

Thay \(x\) = 7 vào y = \(x\) + 1  ⇒  ⇒ y2 = 7 + 1 

y2  =8 (loại vì số chính phương không thể có tận cùng là 8)

TH2: \(x\) + 1 = 6 ⇒ \(x\) = 6 - 1 ⇒ \(x\) = 5 Thay \(x\) = 5 vào biểu thức 

y2 = \(x\) - 1 ⇒ y2 = 5 - 1 ⇒ y2 = 4 ⇒ y = -2; 2

Vì y là só nguyên tố nên y = 2

Vậy các cặp số nguyên tố \(x\); y thỏa mãn đề bài là:  (\(x\); y) = (5; 2)