K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

a) Xét tam giác vuông ADH và tam giác vuông ADK có:

  HAD=KAD (gt)

  AD chung 

\(\implies\) tam giác vuông ADH = tam giác vuông ADK ( cạnh góc vuông - góc nhọn kề )

\(\implies\) AH = AK ( hai cạnh tương ứng )

\(\implies\)  tam giác AHK cân tại A

27 tháng 2 2020

A B C D H K M N

a) Gọi M là giao điểm của tia phân giác ^BAC và CN 

Xét \(\Delta\)HAK có: AM vuông HK và AM là phân giác ^HAK 

=> \(\Delta\)HAK cân tại A

b) Qua B kẻ đường thẳng // AC cắt HK tại N

Xét \(\Delta\)NBD và \(\Delta\)KCD có: ^NBD = ^KCD ; DC = DB ; ^BDN = ^CDK 

=> \(\Delta\)NBD = \(\Delta\)KCD => BN = CK (1)

và ^BND = ^DKC  mà ^BND + ^BNH = DKC + DKA = 180 độ 

=> ^BNH = ^DKA  mà ^DKA = DHA vì \(\Delta\)AHK cân 

=> ^BNH = ^DHA = ^NHB 

=> \(\Delta\)HBN cân => BH = BN (2) 

Từ (1) ; (2) => BH = CK 

c) Ta có: AH = AB + BH ; AC= AK + CK => AC = AH + BH 

=> AH + BH = 12 cm 

và AH - BH = 9cm 

=> AH = 21/2 cm ; BH =3/2 cm

a: gọi giao của tia phân giác góc A với HK là E

Xét ΔAHK có

AE vừa là đường cao, vừa là phân giác

=>ΔAHK cân tại A

b: ΔAHK cân tại A

=>góc BHI=góc AKH

=>góc BHI=góc BIH

=>ΔBIH cân tại B

Chẳng hiểu tại sao Mình chẳng thấy gì ở bài làm của cô Chi mà mình vẫn cứ k đúng ???

11 tháng 5 2020

a, Gọi D vuông góc với phân giác của BAC tại điểm O

Xét △ADH và △ADK cùng vuông tại D

Có: HAD = KAD (gt)

=> △ADH = △ADK (cgv-gnk)

=> AH = AK (2 cạnh tương ứng)

=> △AHK cân tại A

b, Vẽ BI // CK (I  HK) 

=> AKH = BIH (2 góc đồng vị)

Mà AHK = AKH (△AHK cân tại A)

=> BIH = AHK 

=> BIH = BHI

=> △BHI cân tại B

=> BH = BI 

Xét △OBI và △OCK

Có: BOI = COK (2 góc đối đỉnh)

        OB = OC (gt)

       OBI = OCK (BI // CK)

=> △OBI = △OCK (g.c.g)

=> BI = CK (2 cạnh tương ứng)

Mà BH = BI (cmt)

=> BH = CK

c, Ta có: AH = AB + BH , AK = AC - KC

=> AH + AK = AB + BH + AC - KC

=> AH + AH = (AB + AC) + (BH - KC)    (AK = AH)

=> 2AH = AB + AC   (BH = KC => BH - KC = 0)

=> AH = (AB + AC) : 2 = (9 + 12) : 2 = 10,5 (cm)

=> BH = AH - AB = 10,5 - 9 = 1,5 (cm)

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>MF=ME

=>M là trung điểm của EF

=>BD=CE

1 tháng 8 2016

a)Gọi giao của đường phân giác góc BAC và đường thẳng HK là E

Xét ΔAHK có AE vừa là đường cao vừa là đường phân giác

⇒ΔAHK cân tai A

B) vẽ đoạn thẳng BC′//HKđễ thấy AB=AC Mặt khác ΔAHK cân tại A nên AH=AK⇒BH=C′K lại có D là trung điểm BC và HK qua D, song song với BC′ nên DK là đường trung bình của ΔBCC′⇒K là trung điểm CC′⇒CK=C′K⇒BH=CK′

Phần c mk k pít lm nha

nhớ click đúng cho mk

16 tháng 3 2020

Tham khảo link này :  https://olm.vn//hoi-dap/detail/244303790856.html?auto=

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn