K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

Bạn kiểm tra lại đề nhé:

Chứng minh: \(\frac{HE}{AA'}+\frac{HE}{BB'}+\frac{HF}{CC'}=2\)

Ta có:

\(\frac{HA'}{AA'}=\frac{S\left(HBC\right)}{S\left(ABC\right)}\)\(\frac{HB'}{BB'}=\frac{S\left(HAC\right)}{S\left(ABC\right)}\)\(\frac{HC'}{CC'}=\frac{S\left(BHA\right)}{S\left(ABC\right)}\)

=> \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S\left(HAB\right)+S\left(HAC\right)+S\left(HBC\right)}{S\left(ABC\right)}=1\)

=> \(\frac{2HA'}{AA'}+\frac{2HB'}{BB'}+\frac{2HC'}{CC'}=2\)

Lại có: E; D; F lần lượt đối xứng với H qua BC; AC; AB 

=> HE = 2HA'; HD = 2HC'; HF = 2HB' 

=> \(\frac{HE}{AA'}+\frac{HE}{BB'}+\frac{HF}{CC'}=2\)

15 tháng 6 2019

Chứng minh

HE = 2HA'; HD = 3HD'; HF = 2HS;

Theo kết quả trắc nghiệm có:

H A ' A A ' + H B ' B B ' + H C ' C C ' = 1 ;  

Nhân hai vế với 2 Þ ĐPCM

26 tháng 2 2018

a, Có : HA'/AA' = HA'.BC/AA'.BC = S AHB + S AHC / S ABC

Tương tự : HB'/BB' = S BHA + S BHC / S ABC ; HC'/CC' = S CHA + S CHB / S ABC

=> HA'/AA' + HB'/BB' + HC'/CC' = 2.(S AHC + S AHB + S BHC)/S ABC = 2

Tk mk nha

7 tháng 4 2019

a)

'

AA

'

HA

BC

'.

AA

.

2

1

BC

'.

HA

.

2

1

S

S

ABC

HBC

; (0,5đi

m)

Tương t

:

'

CC

'

HC

S

S

ABC

HAB

;

'

BB

'

HB

S

S

ABC

HAC

(0,5đi

m)

1

S

S

S

S

S

S

'

CC

'

HC

'

BB

'

HB

'

AA

'

HA

ABC

HAC

ABC

HAB

ABC

HBC

(0,5đi

m)

b) Áp d

ng tính ch

t phân giác vào các tam giác ABC,

ABI, AIC:

AI

IC

MA

CM

;

BI

AI

NB

AN

;

AC

AB

IC

BI

(0,5đi

m )

AM

.

IC

.

BN

CM

.

AN

.

BI

1

BI

IC

.

AC

AB

AI

IC

.

BI

AI

.

AC

AB

MA

CM

.

NB

AN

.

IC

BI

(0,5đi

m )

12 tháng 3 2021

c) Bổ đề: Cho tam giác ABC có đường cao AH. Khi đó \(AH^2\le\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}\).

Thật vậy, dựng hình chữ nhật AHCE. Lấy F đối xứng với C qua AF.

Ta có \(AH=CE=\dfrac{CF}{2}\).

Do đó \(CF^2+CB^2=BF^2\le\left(AB+AF\right)^2=\left(AB+AC\right)^2\Rightarrow CF^2\le\left(AB+AC-CB\right)\left(AC+AB+BC\right)\Rightarrow AH^2\le\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}\).

Bổ đề được cm.

Áp dụng ta có \(\dfrac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\ge\dfrac{\left(AB+BC+CA\right)^2}{\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}+\dfrac{\left(BC+BA-AC\right)\left(AC+AB+BC\right)}{4}+\dfrac{\left(BC+AC-AB\right)\left(AC+AB+BC\right)}{4}}=4\).

Vậy ta có đpcm.

12 tháng 3 2021

a) Ta có \(\dfrac{HA'}{AA'}=\dfrac{HA'.BC}{AA'.BC}=\dfrac{2S_{HBC}}{2S_{ABC}}=\dfrac{S_{HBC}}{S_{ABC}}\).

Tương tự \(\dfrac{HB'}{BB'}=\dfrac{S_{HCA}}{S_{ABC}};\dfrac{HC'}{CC'}=\dfrac{S_{HAB}}{S_{ABC}}\).

Do đó \(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=\dfrac{S_{HBC}+S_{HCA}+S_{HAB}}{S_{ABC}}=1\).