Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh
HE = 2HA'; HD = 3HD'; HF = 2HS;
Theo kết quả trắc nghiệm có:
H A ' A A ' + H B ' B B ' + H C ' C C ' = 1 ;
Nhân hai vế với 2 Þ ĐPCM
c)Vẽ Cx CC’. Gọi D là điểm đối xứng của A qua Cx
-Chứng minh được góc BAD vuông, CD = AC, AD = 2CC’
ta có: BD BC + CD
-BAD vuông tại A nên: AB2+AD2 = BD2
AB2 + AD2 >= (BC+CD)2
AB2 + 4CC’2 >= (BC+AC)2
4CC’2 >=(BC+AC)2 – AB2
Tương tự: 4AA’2 >= (AB+AC)2 – BC2
4BB’2 (AB+BC)2 – AC2
4(AA’2 + BB’2 + CC’2)>= (AB+BC+AC)2
a) Ta có : \(\frac{HA'}{AA'}=\frac{S_{HA'C}}{S_{AA'C}}=\frac{S_{BHA'}}{S_{AA'B}}=\frac{S_{HA'C}+S_{BHA'}}{S_{AA'B}+S_{AA'C}}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự : \(\frac{HB'}{BB'}=\frac{S_{AHC}}{S_{ABC}};\frac{HC'}{CC'}=\frac{S_{AHB}}{S_{ABC}}\)
\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
b) Ta có : \(\frac{AN}{BN}=\frac{AI}{BI}\)
mà \(\frac{AI}{CI}=\frac{AM}{BM}\Rightarrow AI=\frac{AM}{CM}.CI\)
\(\Rightarrow\frac{AN}{BN}=\frac{AM}{CM}.\frac{CI}{BI}\Rightarrow AN.CM.BI=BN.AM.CI\)
vẽ Cx \(\perp\)CC' ; vẽ D đối xứng với A qua Cx ; DA giao điểm Cx tại I
\(\Rightarrow\)CD = AC và tam giác C'CIA là hình chữ nhật
\(\Rightarrow\)CC' = AI = ID ; \(\widehat{BAD}=90^o\)
Ta có BD \(\le\)BC + CD . Dấu " = " xảy ra \(\Leftrightarrow\)\(\Delta BAD\)vuông tại A \(\Rightarrow\)AC = BC
\(\Rightarrow\)BD2 \(\le\)( BC + CD )2
\(\Delta BAD\)vuông tại A \(\Rightarrow\)BD2 = AB2 + AD2
\(\Rightarrow\)AB2 + AD2 \(\le\)( BC + AC )2
\(\Rightarrow\)AD2 \(\le\)( BC + AC )2 - AB2
\(\Rightarrow\)4CC'2 \(\le\)( BC + AC )2 - AB2 . Dấu " = " xảy ra \(\Leftrightarrow\)AC = BC
tương tự , 4BB'2 \(\le\) ( AB + BC )2 - AC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC
4AA'2 \(\le\)( AB + AC )2 - BC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = AC
Suy ra : \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\)
\(\Rightarrow\)\(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)
Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC = AC hay tam giác ABC đều
Qua O kẻ đường thẳng d song song với B'C' , d cắt BB' và CC' lần lượt tại D , E
Áp dụng hệ quả định lý Ta - lét , ta có :
\(\Rightarrow\frac{KB'}{OD}=\frac{KH}{OH}=\frac{KC'}{OE}\) \(\Rightarrow\frac{KB'}{KC'}=\frac{OD}{OE}\left(1\right)\)
Ta có : \(\widehat{BDO}=\widehat{ECO}\)(Vì cùng bằng \(\widehat{BB'C}\)) và \(\widehat{BOD}=\widehat{EOC}\)
\(\Rightarrow\Delta DBO\infty\Delta CEO\)\(\Rightarrow\frac{OD}{OC}=\frac{OB}{OE}\)\(\Rightarrow OD.OE=OC^2\)\(\Rightarrow\frac{OD}{OE}=\frac{OC^2}{OE^2}\)\(\left(2\right)\)
Lấy F \(\left(F\ne E\right)\)trên cùng đường thẳng CC' sao cho \(OE=OF\)
Lại có : \(\widehat{HB'C'}=\widehat{OCF}\)
\(\Rightarrow\Delta B'C'H\infty\Delta CFO\) \(\Rightarrow\frac{HB'}{HC'}=\frac{OC}{OF}\)\(\Rightarrow\frac{HB'}{HC'}=\frac{OC}{OE}\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)\(\Rightarrow\frac{KB'}{KC'}=\left(\frac{HB'}{HC'}\right)^2\)\(\left(đpcm\right)\)
tự kẻ hình nha bạn
a, có \(\hept{\begin{cases}S_{HBC}=\frac{BC\cdot HA'}{2}\\S_{ABC}=\frac{BC\cdot AA'}{2}\end{cases}}\) \(\Rightarrow\frac{S_{HBC}}{S_{ABC}}=\frac{BC\cdot HA'}{2}\div\frac{BC\cdot AA'}{2}=\frac{HA'}{AA'}\)
có tương tự ta có \(\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\) và \(\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\)
\(\Rightarrow\frac{S_{HAC}+S_{HBC}+S_{HAB}}{S_{ABC}}=\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
để mjnh làm tiếp câu b
b, IN là pg của \(\widehat{AIB}\) (gt)
\(\Rightarrow\frac{NB}{IB}=\frac{NA}{AI}\) (tc)
\(\Rightarrow NB\cdot AI=IB\cdot NA\)
\(\Rightarrow NB\cdot AI\cdot CM=IB\cdot AN\cdot CM\left(1\right)\)
IM là pg của \(\widehat{AIC}\) (gt)
\(\Rightarrow\frac{AM}{AI}=\frac{MC}{IC}\)
\(\Rightarrow AM\cdot IC=AI\cdot CM\)
\(\Rightarrow AM\cdot IC\cdot NB=AI\cdot CM\cdot NB\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AN\cdot BI\cdot CM=BN\cdot CI\cdot AM\)
Câu c) Các bạn tự vẽ hình nhé mình chỉ giải thôi:
Kẻ tia Cx vuông góc với CC'. Vẽ D là điểm đối xứng với A qua Cx. AD giao Cx tại I.
C/m C'AIC là hcn=> Góc BAD = 90 độ
=> CC'= AI
Có: D đối xứng với D qua Cx, I là giao điểm của AD và Cx
=> I là trung điểm của AD=> 2AI=AD
=> 2CC'=AD.
=> AB2+ AD2= BD2( Đlí PTG)
Ta có: Với 3 điểm B,C,D thì sẽ luôn có: (BD+CD)2>= BD2
Có: AB2+ AD2=BD2
=> (BD+CD)2>= AB2+ AD2
=> (BD+CD)2>= AB2+ (2CC')2
=> (BD+CD)2>= AB2+ 4CC'
=> (BD+CD)2- AB2>= 4CC'(1)
CMTT=> (AB+AC)2-BC2>= 4AA'(2)
và (AB+BC)2- AC2>= 4BB'(3)
Từ (1),(2) và (3) ta chứng minh đc:
(AB+BC+AC)2>= 4(AA'2+BB'2+CC'2)
=> GTNN bằng 4 <=> BC=AC; AC=AB; AB=BC<=> AB=BC=AC
=> GTNN là 4 khi tam giác ABC đều.
Bạn kiểm tra lại đề nhé:
Chứng minh: \(\frac{HE}{AA'}+\frac{HE}{BB'}+\frac{HF}{CC'}=2\)
Ta có:
\(\frac{HA'}{AA'}=\frac{S\left(HBC\right)}{S\left(ABC\right)}\); \(\frac{HB'}{BB'}=\frac{S\left(HAC\right)}{S\left(ABC\right)}\); \(\frac{HC'}{CC'}=\frac{S\left(BHA\right)}{S\left(ABC\right)}\)
=> \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S\left(HAB\right)+S\left(HAC\right)+S\left(HBC\right)}{S\left(ABC\right)}=1\)
=> \(\frac{2HA'}{AA'}+\frac{2HB'}{BB'}+\frac{2HC'}{CC'}=2\)
Lại có: E; D; F lần lượt đối xứng với H qua BC; AC; AB
=> HE = 2HA'; HD = 2HC'; HF = 2HB'
=> \(\frac{HE}{AA'}+\frac{HE}{BB'}+\frac{HF}{CC'}=2\)