Phân tích đa thức thành nhân từ
x^3-5x^2+8x-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{x^3 – 5x^2 + 8x – 4 }\)
\(\text{= x^3 – 4x^2 + 4x – x^2 + 4x – 4}\)
\(\text{= x( x^2 – 4x + 4 ) – ( x^2 – 4x + 4 )}\)
\(\text{= ( x – 1 ) ( x – 2 )^2}\)
\(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x-4\\ =x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\\ =\left(x^2-4x+4\right)\left(x-1\right)\\ =\left(x-2\right)^2\left(x-1\right)\)
\(=x^3-x+7x+7=x\left(x-1\right)\left(x+1\right)+7\left(x+1\right)\\ =\left(x+1\right)\left(x^2-x+7\right)\)
Sửa đề: x^3+6x^2+11x+6
=x^3+x^2+5x^2+5x+6x+6
=(x+1)(x^2+5x+6)
=(x+1)(x+2)(x+3)
Ta có : \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
Ta có: \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
x 4 - 5 x 2 + 4 = x 4 - 4 x 2 - x 2 + 4 = x 4 - 4 x 2 - x 2 - 4 = x 2 x 2 - 4 - x 2 - 4 = x 2 - 4 x 2 - 1 = x + 2 x - 2 x + 1 x - 1
a) \(4x^2-16+\left(3x+12\right)\left(4-2x\right)\)
\(=\left(2x-4\right)\left(2x+4\right)-3\left(x+4\right)\left(2x-4\right)\)
\(=\left(2x-4\right)\left(2x+4-3x-12\right)\)
\(=-\left(2x-4\right)\left(x+8\right)\)
b) \(x^3+x^2y-15x-15y\)
\(=x^2\left(x+y\right)-15\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-15\right)\)
c) \(3\left(x+8\right)-x^2-8x\)
\(=3\left(x+8\right)-x\left(x+8\right)\)
\(=\left(x+8\right)\left(3-x\right)\)
d) \(x^3-3x^2+1-3x\)
\(=x^3+1-3x^2-3x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
d) \(5x^2-5y^2-20x+20y\)
\(=5\left(x^2-y^2\right)-20\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-20\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y-4\right)\)
\(=-5x^2+15x+x-3=-5x\left(x-3\right)+\left(x-3\right)=\left(1-5x\right)\left(x-3\right)\)
\(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
Ta có: \(x^3-5x^2+8x-4\)
\(=x^3-4x^2+4x-x^2+4x-4\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x-2\right)^2\left(x-1\right)\)
Vậy \(A=\left(x-1\right)\left(x-2\right)^2\)
Ta có : \(x^3-5x^2+8x-4\)\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4\)\(\Leftrightarrow x^2.\left(x-1\right)-4x.\left(x-1\right)+4.\left(x-1\right)\)\(\Leftrightarrow\left(x-1\right).\left(x^2-4x+4\right)\)\(\Leftrightarrow\left(x-1\right).\left(x-2\right)^2\)