\(\frac{x^2+x}{x^2+x+2}\)
CM cái trên luôn nhỏ hơn 1 nha .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = \(\left(\frac{x}{x-3}-\frac{x+3}{3x^2-6x-9}+\frac{1}{3x+3}\right)\)\(\frac{x^2-2x-3}{x^2+x+2}\)
= \(\left(\frac{x\left(3x+3\right)}{3\left(x-3\right)\left(x+1\right)}-\frac{x+3}{3\left(x-3\right)\left(x+1\right)}+\frac{x-3}{3\left(x+1\right)\left(x-3\right)}\right)\)\(\frac{\left(x+1\right)\left(x-3\right)}{x^2+x+2}\)
= \(\frac{3\left(x^2+x-2\right)}{3\left(x-3\right)\left(x+1\right)}\)* \(\frac{\left(x+1\right)\left(x-3\right)}{x^2+x+2}\) = \(\frac{x^2+x-2}{x^2+x+2}\)
Ta thấy x2 + x - 2 < x2 + x + 2
nên M < 1
Câu 2:
a,x(x−6)+10x(x−6)+10
= x2−6x+10x2−6x+10
=(x−3)2+1>0(x−3)2+1>0\forall x
b, x2−2x+9y2−6y+3x2−2x+9y2−6y+3
= (x2−2x+1)+(9y2−6y+1)+1(x2−2x+1)+(9y2−6y+1)+1
=(x−1)2+(3y−1)2+1>0(x−1)2+(3y−1)2+1>0
kkkkkkkk cho mình nha
A=x^2-6x+10=x^2-6x+9+1=(x-3)^2+1
Co (x-3)^2>=0 1>0
=>A>0 voi moi x
\(1,x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\\ 2,-2x^2-x-1=-2\left(x^2+2\cdot\dfrac{1}{4}x+\dfrac{1}{16}+\dfrac{7}{16}\right)\\ =-2\left(x+\dfrac{1}{4}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}< 0\\ 3,\dfrac{1}{2}x^2-2x+2=\dfrac{1}{2}\left(x^2-4x+4\right)=\dfrac{1}{2}\left(x-2\right)^2\ge0\)
a) (x-3)+(x-2)+(x-1)+....+10+11=11
(x-3)+(x-2)+(x-1)+....+10 =0
gọi số hạng của tổng vế trái là n
(x-3+10).\(\frac{n}{2}\)=0
(x+7).n:2=0
(x+7) =0
\(\Rightarrow\)x+7=0 (do n\(\ne\)0)
x=0-7
x=-7
b) \(\frac{2}{3}\left[\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right]<=x<=4\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{6}\right]\)
\(\frac{2}{3}.\frac{11}{12}<=x<=\frac{13}{3}.\frac{1}{3}\)
\(\frac{11}{18}<=x<=\frac{13}{9}\)
do x\(\in\)z nên x=1
vậy x=1
đề sai
luôn nhỏ mà