K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

a)\(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left[\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right]\)

\(=\left(1-\frac{-2\left(x^3-3\right)}{\left(x^3+3\right)\left(x^3-3\right)}\right).\frac{4}{x^2\left(x^3+3\right)}:\left[\frac{6\left(x^3-2\right)\left(x^3+2\right)}{x^3\left(x^3+3\right)^2}:\frac{3x^3+6}{2x}\right]\)

\(=\left(\frac{x^3+3}{x^3+3}-\frac{-2}{x^3+3}\right).\frac{4}{x^2\left(x^3+3\right)}:\frac{12x\left(x^3-2\right)}{3x^3\left(x^3+3\right)^2\left(x^3+2\right)}\)

\(=\frac{4\left(x^3+3+2\right)}{x^2\left(x^3+3\right)^2}:\frac{12x\left(x^3-2\right)}{3x^3\left(x^3+3\right)^2\left(x^3+2\right)}=\frac{\left(x^3+5\right)\left(x^3+2\right)}{x^3-2}\)

Mình làm câu a thôi nhé! Rút gọn xong muốn tắt thở luôn à khocroi

26 tháng 2 2020

Éc lại quên ĐKXĐ gianroi Bạn tự thêm vào nhé ha

20 tháng 12 2018

\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)

b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)

c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\) 

sau do tinh

cau nay la toan lp 8 nha

20 tháng 12 2018

P= O/ nha

5 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)