K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I. Sơ đồ khảo sát hàm số1. Tập xác định+ Phân thức: mẫu số khác 00;+ Căn thức: biểu thức trong căn không âm;+ Hàm số lượng giác.2. Sự biến thiên+ Xét chiều biến thiên của hàm số:Tính đạo hàm y'y′;Tìm các điểm mà tại đó đạo hàm bằng 00 hoặc không xác định;Xét dấu đạo hàm y'y′ suy ra chiều biến thiên của hàm số.+ Tìm cực trị.+ Tìm các giới hạn vô cực, các giới hạn tại vô...
Đọc tiếp
I. Sơ đồ khảo sát hàm số1. Tập xác định

+ Phân thức: mẫu số khác 0;

+ Căn thức: biểu thức trong căn không âm;

+ Hàm số lượng giác.

2. Sự biến thiên

+ Xét chiều biến thiên của hàm số:

Tính đạo hàm y';

Tìm các điểm mà tại đó đạo hàm bằng 0 hoặc không xác định;

Xét dấu đạo hàm y' suy ra chiều biến thiên của hàm số.

+ Tìm cực trị.

+ Tìm các giới hạn vô cực, các giới hạn tại vô cực và tiệm cận (nếu có).

+ Lập bảng biến thiên.

3. Đồ thị

+ Tìm giao điểm của đồ thị với các trục tọa độ;

+ Dựa vào các yếu tố ở trên để vẽ đồ thị;

+ Chú ý thêm tính chẵn, lẻ và tính tuần hoàn (nếu có). 

II. Khảo sát hàm số bậc ba dạng y=ax^3+bx^2+cx+d(a \ne 0)Ví dụ: Khảo sát hàm số y=-x^3+3x^2-4x+2

1) Tập xác định \mathbb R.

2) Sự biến thiên

+ Chiều biến thiên:

Luyện tập   

y' =

-3x^3+6x^2-4x.-x^2+3x-4.-3x^2+6x-4.Kiểm tra

 

Ta có y' = -3(x-1)^2-1 < 0, \forall x \in \mathbb R.

Luyện tập   

Nên hàm số đã cho luôn nghịch biếnđồng biến trên khoảng (-\infty;+\infty)

và hàm số không có cực trịcó cực tiểucó cực đại.

Kiểm tra

+ Giới hạn tại vô cực:

\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\left[-x^3\left(1-\dfrac{3}{x}+\dfrac{4}{x^2}-\dfrac{2}{x^3}\right)\right]=+\infty;

 

Luyện tập   

\lim\limits_{x\rightarrow+\infty}y=+-\infty

Kiểm tra

+ Bảng biến thiên

3) Đồ thị

Đồ thị hàm số cắt trục Ox tại điểm (1;0).

Luyện tập   

và cắt trục Oy tại điểm (012;-102)

Kiểm tra

Đồ thị của hàm số đã cho là

Dạng đồ thị các hàm số dạng y=ax^3+bx^2+cx+d(a\ne 0)

III. Khảo sát hàm số trùng phương dạng y= ax^4+bx^2+c(a\ne 0)

IV. Khảo sát hàm số phân thức dạng y=\dfrac{ax+b}{cx+d}(cx+d \ne 0; ad-bc \ne 0)

I. Sơ đồ khảo sát hàm số1. Tập xác định

+ Phân thức: mẫu số khác 0;

+ Căn thức: biểu thức trong căn không âm;

+ Hàm số lượng giác.

2. Sự biến thiên

+ Xét chiều biến thiên của hàm số:

Tính đạo hàm y';

Tìm các điểm mà tại đó đạo hàm bằng 0 hoặc không xác định;

Xét dấu đạo hàm y' suy ra chiều biến thiên của hàm số.

+ Tìm cực trị.

+ Tìm các giới hạn vô cực, các giới hạn tại vô cực và tiệm cận (nếu có).

+ Lập bảng biến thiên.

3. Đồ thị

+ Tìm giao điểm của đồ thị với các trục tọa độ;

+ Dựa vào các yếu tố ở trên để vẽ đồ thị;

+ Chú ý thêm tính chẵn, lẻ và tính tuần hoàn (nếu có). 

II. Khảo sát hàm số bậc ba dạng y=ax^3+bx^2+cx+d(a \ne 0)Ví dụ: Khảo sát hàm số y=-x^3+3x^2-4x+2

1) Tập xác định \mathbb R.

2) Sự biến thiên

+ Chiều biến thiên:

Luyện tập   

y' =

-3x^3+6x^2-4x.-x^2+3x-4.-3x^2+6x-4.Kiểm tra

 

Ta có y' = -3(x-1)^2-1 < 0, \forall x \in \mathbb R.

Luyện tập   

Nên hàm số đã cho luôn nghịch biếnđồng biến trên khoảng (-\infty;+\infty)

và hàm số không có cực trịcó cực tiểucó cực đại.

Kiểm tra

+ Giới hạn tại vô cực:

\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\left[-x^3\left(1-\dfrac{3}{x}+\dfrac{4}{x^2}-\dfrac{2}{x^3}\right)\right]=+\infty;

 

Luyện tập   

\lim\limits_{x\rightarrow+\infty}y=+-\infty

Kiểm tra

+ Bảng biến thiên

3) Đồ thị

Đồ thị hàm số cắt trục Ox tại điểm (1;0).

Luyện tập   

và cắt trục Oy tại điểm (012;-102)

Kiểm tra

Đồ thị của hàm số đã cho là

Dạng đồ thị các hàm số dạng y=ax^3+bx^2+cx+d(a\ne 0)

III. Khảo sát hàm số trùng phương dạng y= ax^4+bx^2+c(a\ne 0)

IV. Khảo sát hàm số phân thức dạng y=\dfrac{ax+b}{cx+d}(cx+d \ne 0; ad-bc \ne 0)

2
19 tháng 10 2021

solo tổ hợp xác suất ko ? 

19 tháng 10 2021

2k8 đăng toán 12 cc 

27 tháng 11 2019

a) Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = (a - 1) x 2  + 2ax + 3a - 2.

Với a = 1, y' = 2x + 1 đổi dấu khi x đi qua -1/2. Hàm số không đồng biến.

Với a ≠ 1 thì với mọi x mà tại đó y' ≥ 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(y' = 0 chỉ tại x = -2, khi a = 2).

Vậy với a ≥ 2 hàm số luôn đồng biến

b) Đồ thị cắt trục hoành tại ba điểm phân biệt khi và chỉ khi phương trình y = 0 có ba nghiệm phân biệt. Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y = 0 có ba nghiệm phân biệt khi và chỉ khi phương trình

(a - 1) x 2  + 3ax + 9a - 6 = 0

Có hai nghiệm phân biệt khác 0. Muốn vậy, ta phải có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ trên, ta được:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Khi a = 3/2 thì

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = 0 ⇔  x 2  + 6x + 5 = 0 ⇔ x = -1 hoặc x = -5.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị như trên Hình 1.18

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên từ đồ thị (C) ta suy ngay ra đồ thị của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

như trên Hình 1.19

Giải sách bài tập Toán 12 | Giải sbt Toán 12

2 tháng 11 2017

a) y = x 4  – 2 x 2

y′ = 4 x 3  – 4x = 4x( x 2  – 1)

y′ = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) y′ = 4 x 3  – 4mx = 4x( x 2  – m)

Để (Cm) tiếp xúc với trục hoành tại hai điểm phân biệt thì điều kiện cần và đủ là phương trình y’ = 0 có hai nghiệm phân biệt khác 0 và y C T  = 0.

    +) Nếu m ≤ 0 thì  x 2  – m ≥ 0 với mọi x nên đồ thị không thể tiếp xúc với trục Ox tại hai điểm phân biệt.

    +) Nếu m > 0 thì y’ = 0 khi x = 0; x =  m  hoặc x = - m .

f(√m) = 0 ⇔ m 2  – 2 m 2  + m 3  –  m 2  = 0 ⇔  m 2 (m – 2) = 0 ⇔ m = 2 (do m > 0)

Vậy m = 2 là giá trị cần tìm.

19 tháng 1 2016

Khi m = 2 : y = x + 5

TXĐ : D = R.

Tính biến thiên :

  • a = 1 > 0 hàm số đồng biến trên R.

bảng biến thiên :

x

-∞

 

+∞

y

-∞

\nearrow

+∞

Bảng giá trị :

x

0

-5

y

5

0

Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).

b/(dm) đi qua điểm A(4, -1) :

4 = (m -1)(-1) +2m +1

<=> m = 2

3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1

4.(dm) đi qua điểm  cố định M(x0, y0) :

Ta được  : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.

<=> (x0 + 2) m = y0 – 1 + x0(*)

(*) luôn đúng mọi m khi :

x0 + 2= 0 và  y0 – 1  + x0 = 0

<=> x0 =- 2  và  y0 = 3

Vậy : điểm  cố định M(-2, 3)

 

NV
21 tháng 12 2022

a.

Do (P) đi qua F, thay tọa độ F vào phương trình (P) ta được:

\(a.0^2+b.0+c=5\Rightarrow c=5\)

Do (P) có đỉnh \(I\left(3;-4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{2a}=3\\a.3^2+b.3+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=-6a\\9a+3b+5=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-6a\\9a+3.\left(-6a\right)=-9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-6\end{matrix}\right.\)

hay pt (P) có dạng: \(y=x^2-6x+5\)

b. Em tự giải

11 tháng 12 2018

Bước 1: Tìm tập xác định của hàm số

Bước 2: Xét sự biến thiên

- Xét chiều biến thiên:

+ Tìm đạo hàm f’(x)

+ Tìm các điểm mà tại đó f’(x) bằng không hoặc không xác định

+ Xét dấu của đạo hàm f’(x) và suy ra chiều biến thiên của hàm số.

- Tìm cực trị

- Tìm giới hạn vô cực và tiệm cận ( nếu có)

- Lập bảng biến thiên.

Bước 3: Vẽ đồ thị hàm số.

3 tháng 3 2019

Hàm số y = f(x)

Các bước khảo sát hàm số:

1. Tìm tập xác định của hàm số

2. Sự biến thiên

- Xét chiều biến thiên:

   + Tính đạo hàm y'

   + Tìm các điểm tại đó y' bằng 0 hoặc không xác định

   + Xét dấu của đạo hàm y' và suy ra chiều biến thiên của hàm số.

QUẢNG CÁO

- Tìm cực trị

- Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm tiệm cận (nếu có)

- Lập bảng biến thiên.

3. Vẽ đồ thị của hàm số

Dựa vào bảng biến thiên và các yếu tố xác định ở trên để vẽ đồ thị.

1 tháng 4 2017

a) Tìm tập xác định của hàm số. Xét tính chẵn, lẻ, tuần hoàn của hàm số để thu hẹp phạm vi khảo sát.

b) Sự biến thiên :

+ Xét sự biến thiên của hàm số :

- Tìm đạo hàm bậc nhất y' ;

- Tìm các điểm tại đó y' bằng 0 hoặc không xác định ;

- Xét dấu y' và suy ra chiều biến thiên của hàm số .

+ Tìm cực trị .

+ Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm các tiệm cận (nếu có).

+ Lập bảng biến thiên tổng kết các bước trên để hình dung ra dáng điệu của đồ thị .

c) vẽ đồ thị (thể hiện các cực trị, tiệm cận, giao của đồ thị với các trục, . . .).



Câu 2: 

a) Để đồ thị hàm số \(y=\left(m+1\right)x^2\) đi qua điểm A(1;2) thì

Thay x=1 và y=2 vào hàm số \(y=\left(m+1\right)x^2\), ta được:

m+1=2

hay m=1

Vậy: m=1

21 tháng 11 2018

a) y = x 3  − (m + 4) x 2  − 4x + m

⇔ ( x 2  − 1)m + y − x 3  + 4 x 2  + 4x = 0

Đồ thị của hàm số (1) luôn luôn đi qua điểm A(x; y) với mọi m khi (x; y) là nghiệm của hệ phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ, ta được hai nghiệm:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm (1; -7) và (-1; -1).

b) y′ = 3 x 2  − 2(m + 4)x – 4

Δ′ = ( m + 4 ) 2  + 12

Vì Δ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) Học sinh tự giải.

d) Với m = 0 ta có: y = x 3  – 4 x 2  – 4x.

Đường thẳng y = kx sẽ cắt (C) tại ba điểm phân biệt nếu phương trình sau có ba nghiệm phân biệt:  x 3  – 4 x 2  – 4x = kx.

Hay phương trình  x 2  – 4x – (4 + k) = 0 có hai nghiệm phân biệt khác 0, tức là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

4 tháng 1 2018

* Hàm số y = ax + b

Trường hợp a > 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = a > 0. Vậy hàm số đồng biến trên toàn bộ R.

QUẢNG CÁO

Giải bài tập Toán 12 | Giải Toán lớp 12

QUẢNG CÁO

Trường hợp a < 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = a < 0. Vậy hàm số đồng biến trên toàn bộ R.

Giải bài tập Toán 12 | Giải Toán lớp 12

* Hàm số y = ax2 + bx + c

Trường hợp a > 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = 2ax + b. Cho y’ = 0 thì x = - b/2a.

Giải bài tập Toán 12 | Giải Toán lớp 12

Hàm số nghịch biến trên khoảng (-∞,- b/2a).

Hàm số đồng biến trên khoảng [- b/2a, +∞].

Hàm số đạt cực tiểu bằng - Δ/4a tại x = - b/2a .

3. Vẽ đồ thị:

Giải bài tập Toán 12 | Giải Toán lớp 12

Trường hợp a < 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = 2ax + b. Cho y’ = 0 thì x = - b/2a.

Giải bài tập Toán 12 | Giải Toán lớp 12

Hàm số đồng biến trên khoảng (-∞,- b/2a).

Hàm số nghịch biến trên khoảng [- b/2a, +∞].

Hàm số đạt cực đại bằng - Δ/4a tại x = - b/2a .

3. Vẽ đồ thị:

Giải bài tập Toán 12 | Giải Toán lớp 12