cho AD la phân giác BAC, DE//AB. Tìm x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) do 2 tam giác ABD và ADE là 2 tam giác vuông mà có góc BAD và EAD bằng nhau ( t/chất) và chung AD
nên 2 tam giác này bằng nhau ( ch-gn) nên AB = AE 2 cạnh tương ứng
b) Do AB =AE chứng minh trên nên tam giác ABE cân ở A mà có tia phân giác AD của góc BAC nên AD vuông góc với cạnh đáy BE của tam giác ABE ( tính chất tia phân giác trong tam giác cân )
c) Do góc BCA = 30 độ ( tự tính được do ta biết số đo góc ABC = 90 và BAC = 60 ) mà có tia p/g của BAC nên góc DAC = 1/2 góc BAC nên góc DAC = 30 độ = góc DCA => tam giác DAC cân ở D
=> AD = DC
Do AD>AB (theo tính chất cạnh huyền > cạnh góc vuông ) mà AD = DC nên DC > AB
ĐPCM
( bạn tích đúng cho mình nhé, gõ mỏi hết cả tay =))) )
Xét 2 tam giác DEB và DFC:
.\(\widehat{E}\)=\(\widehat{F}\) (gt)
.\(\widehat{B}\)=\(\widehat{C}\) (gt)
.BD = DC (gt)
\(\Rightarrow\)Tam giác DEB bằng tam giác DFC. (g.c.g)
b Xét hai tam giác AED và ADF.
.\(\widehat{E}\)=\(\widehat{F}\)(gt)
.Chung cạnh AD
.\(\widehat{A1}\)=\(\widehat{A2}\)(gt)
\(\Rightarrow\)Tam giác AED =ADF (g c g)
c Xét hai tam giác ABD và ACD
\(\widehat{B}\)=\(\widehat{C}\)(gt)
. BA = BC (gt)
..BD= DC (gt)
\(\Rightarrow\)Tam giác ABD = ACD (c.g.c)
\(\Rightarrow\)Hai tam giác này phải chung cạnh AD mà : \(\Delta\)ABD=\(\Delta\)ACD =\(\Delta\)ABC:2
\(\Rightarrow\)ADlà tia phân giác của BAC