Cho hai đường thẳng y = x – 3m + 1 (d 1 ) và y = 2x – 2 (d 2 ). Tìm m để hai đt (d 1 ) và (d 2 ) cắt
nhau tại một điểm nằm phía trên trục hoành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0)
<=> \(0=6+b\Leftrightarrow b=-6\)
2, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-1\right)x-m+4=0\)
Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay
\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)
a: PTHDGĐ là:
x^2-(m-1)x-(m^2+1)=0
a*c=-m^2-1<0
=>(P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục Oy
b: |x1|+|x2|=2căn 2
=>x1^2+x2^2+2|x1x2|=8
=>(x1+x2)^2-2x1x2+2|x1x2|=8
=>(m-1)^2-2(-m^2+1)+2|-m^2-1|=8
=>(m-1)^2+2(m^2+1)+2(m^2+1)=8
=>m^2-2m+1+4m^2+4=8
=>5m^2-2m-3=0
=>5m^2-5m+3m-3=0
=>(m-1)(5m+3)=0
=>m=1 hoặc m=-3/5
1) d đi qua M (m2 ; 1) ta có:
2m2 + 3m - 4 = 1
=> 2m2 +3m -5 = 0
m1 = 1 ; m2 = -5/2
2) d giao với hoành độ thì giao điểm có tọa độ (a; 0) và a>1
ta có : 0 = 2a +3m -4 => \(a=\frac{4-3m}{2}\)
\(a>1\Leftrightarrow\frac{4-3m}{2}>1\Leftrightarrow4-3m>2\Leftrightarrow-3m>-2\Leftrightarrow m< \frac{2}{3}\)
Vậy m<2/3 thì .............
3) không hiểu ý câu hỏi
a) Khi \(m=1\) \(\Rightarrow\left(d\right):y=2x+8\)
Xét phương trình hoành độ giao điểm
\(x^2=2x+8\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
+) Với \(x=4\Rightarrow y=16\)
+) Với \(x=-2\Rightarrow y=4\)
Vậy khi \(m=1\) thì (P) cắt (d) tại 2 điểm phân biệt \(\left(4;16\right)\) và \(\left(-2;4\right)\)
b) Xét phương trình hoành độ giao điểm
\(x^2-2x+m^2-9=0\) (*)
Ta có: \(\Delta'=10-m^2\)
Để (P) cắt (d) \(\Leftrightarrow\) Phương trình (*) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'=10-m^2>0\) \(\Leftrightarrow-\sqrt{10}< m< \sqrt{10}\)
Theo đề: (P) cắt (d) tại 2 điểm nằm về 2 phía của trục tung
\(\Leftrightarrow\) Phương trình (*) có 2 nghiệm trái dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1x_2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}10-m^2>0\\m^2-9< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{10}< m< \sqrt{10}\\-3< m< 3\end{matrix}\right.\) \(\Leftrightarrow-3< m< 3\)
Vậy ...
Hoành độ của 2 giao điểm là nghiệm của phương trình
x2=mx+m+1x2=mx+m+1
⇒x2−mx−m−1=0⇒x2-mx-m-1=0
Δ=(−m)2+4(m+1)=m2+4m+4=(m+2)2≥0∀mΔ=(-m)2+4(m+1)=m2+4m+4=(m+2)2≥0∀m
Vậy phương trình luôn có nghiệm
Để (P)(P) cắt (d)(d) tại 2 điểm có hoành độ x1x1 và x2x2 thì
Δ>0Δ>0
⇒m≠2⇒m≠2
Để 2 giao điểm khác phía với trục tung thì
x1.x2<0x1.x2<0
Theo hệ thức vi-ét
⇒⇒{x1.x2=−m−1x1+x2=m{x1.x2=−m−1x1+x2=m
Để −m−1<0-m-1<0
⇒m≻1⇒m≻1
Ta lại có
{x1+x2=m2x2−3x2=5{x1+x2=m2x2−3x2=5
⇒{2x1+2x2=2m2x1−3x2=5⇒{2x1+2x2=2m2x1−3x2=5
⇒{x1+x2=m5x2=2m−5⇒{x1+x2=m5x2=2m−5
⇒{x1+x2=mx2=2m−55⇒{x1+x2=mx2=2m−55
⇒⎧⎪ ⎪⎨⎪ ⎪⎩x1=5m−2m+55=3m+55x2=2m−55⇒{x1=5m−2m+55=3m+55x2=2m−55
Thay x1x1 và x2x2 vào
x1.x2=−m−1x1.x2=-m-1
Ta được
3m+55.2m−55=−m−13m+55.2m-55=-m-1
⇒6m2−5m−25=−25m−25⇒6m2-5m-25=-25m-25
⇒6m2+20m=0⇒6m2+20m=0
⇒2m(3m+10)=0⇒2m(3m+10)=0
⇒⇒⎡⎣m=0(TM)m=−103(KTM)[m=0(TM)m=−103(KTM)
Vậy với m=0m=0 thì thõa mãn đầu bài
Sai dấu làm dò mãi mới ra
Để ( d1 ) cắt ( d2 ) thì: \(1\ne2\)
Hoành độ giao điểm của ( d1 ) và ( d2 ) có nghiệm là:
x - 3m + 1 = 2x - 2
- x - 3m + 3 = 0
- x - 3.( m - 1 ) = 0
x = - 3.( m - 1 )
\(\Rightarrow y=-6m+4\)
Để hai đường thẳng ( d1 ) và ( d2 ) cắt nhau tại một điểm nằm trên trục hoành thì:
y = 0 \(\Rightarrow-6m+4=0\Rightarrow m=\frac{4}{6}=\frac{2}{3}\)
Vậy...
sai r bạn , nằm phía trên chứ không phải nằm trên , y>0 mới đúng