Có thể giúp em một tí được không ạ ?
Giải các phương trình và bất phương trình sau:
1) \(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)
2) \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)
Em cảm ơn trước ạ :<<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐK: \(x\ge-1\)
\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)
<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)
TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)
(1) luôn đúng
Th2: x\(>-\frac{1}{3}\)
<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)
<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)
<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm
Vì với x \(>-\frac{1}{3}\):
ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)
\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)
=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x
=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)
Vậy \(x< -\frac{1}{3}\)
Xin lỗi bạn kết luận bài 1 là:
\(-1\le x\le-\frac{1}{3}\)
Bài 2) \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)
ĐK: \(x\ge-2\)
(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)
<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)
<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)
<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)
<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)
<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)
(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)
(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)
Kết luận:...
a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)
\(\Leftrightarrow25x-4x=-8-75\)
\(\Leftrightarrow21x=-83\)
hay \(x=-\dfrac{83}{21}\)
b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)
\(\Leftrightarrow\left|2x-1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)
\(\Leftrightarrow\left|2x+1\right|=3x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)
d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)
\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)
\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)
\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)
\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)
\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)
\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)
\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)
vậy: Phương trình vô nghiệm
ĐKXĐ: \(x\ge3\)
\(pt\Leftrightarrow5\sqrt{x-3}+3\sqrt{x-3}-\sqrt{x-3}=7\)
\(\Leftrightarrow7\sqrt{x-3}=7\Leftrightarrow\sqrt{x-3}=1\)
\(\Leftrightarrow x-3=1\Leftrightarrow x=4\left(tm\right)\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
Lời giải:
a.
PT $\Leftrightarrow |2x+1|=|x-1|$
$\Leftrightarrow 2x+1=x-1$ hoặc $2x+1=-(x-1)$
$\Leftrightarrow x+2=0$ hoặc $3x=0$
$\Leftrightarrow x=-2$ hoặc $x=0$ (tm)
b.
PT $\Leftrightarrow 9x^2-6x+1=x^2-4x+4$
$\Leftrightarrow 8x^2-2x-3=0$
$\Leftrightarrow (4x-3)(2x+1)=0$
$\Leftrightarrow 4x-3=0$ hoặc $2x+1=0$
$\Leftrightarrow x=\frac{3}{4}$ hoặc $x=\frac{-1}{2}$ (tm)
a: =>|2x+1|=|x-1|
=>2x+1=x-1 hoặc 2x+1=-x+1
=>x=-2 hoặc x=0
b: =>|3x-1|=|x-2|
=>3x-1=x-2 hoặc 3x-1=-x+2
=>2x=-1 hoặc 4x=3
=>x=-1/2 hoặc x=3/4
\(\sqrt{4x^2-4x+1}=3-x\left(x\in R\right)\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=3-x\\ \Leftrightarrow2x-1=3-x\\ \Leftrightarrow3x=4\Leftrightarrow x=\dfrac{4}{3}\\ \sqrt{9x+9}+\sqrt{x+1}-\sqrt{4x+4}=2\left(x+1\right)\left(x\ge-1\right)\\ \Leftrightarrow\sqrt{x+1}\left(\sqrt{9}+1+\sqrt{4}\right)=2\left(x+1\right)\\ \Leftrightarrow6\sqrt{x+1}=2\left(x+1\right)\\ \Leftrightarrow3\sqrt{x+1}=x+1\\ \Leftrightarrow\sqrt{x+1}\left(3-\sqrt{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+1=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=8\left(tm\right)\end{matrix}\right.\)
a, ĐK: \(x\in R\)
\(\sqrt{4x^2-4x+1}=3-x\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3-x\)
\(\Leftrightarrow\left|2x-1\right|=3-x\)
TH1: \(\left\{{}\begin{matrix}2x-1\ge0\\2x-1=3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{4}{3}\)
TH2: \(\left\{{}\begin{matrix}2x-1< 0\\1-2x=3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x=-2\end{matrix}\right.\Leftrightarrow x=-2\)
a, ĐK: \(x\ge2\)
\(\sqrt{2x+1}-\sqrt{x-2}=x+3\)
\(\Leftrightarrow\dfrac{x+3}{\sqrt{2x+1}+\sqrt{x-2}}=x+3\)
\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{x-2}}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\sqrt{2x+1}+\sqrt{x-2}=1\left(vn\right)\end{matrix}\right.\)
Phương trình vô nghiệm.
b, ĐK: \(x\ge-1\)
\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{\left(x+3\right)\left(x+1\right)}\)
\(\Leftrightarrow-\sqrt{x+3}\left(\sqrt{x+1}-1\right)+2x\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)