Cho tam giác ABC cân A , đường trung tuyến AD . M là trung điểm AC . E đối xứng với D qua M . Cm : ADCE là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: E đối xứng D qua điểm O
a: Xét tứ giác ADCE có
O là trung điểm chung của AC và DE
=>ADCE là hình bình hành
Hình bình hành ADCE có \(\widehat{ADC}=90^0\)
nên ADCE là hình chữ nhật
b: Ta có: ADCE là hình chữ nhật
=>AE//CD và AE=CD
Ta có: ΔABC cân tại A
mà AD là đường cao
nên D là trung điểm của BC
=>DB=DC
Ta có: AE//DC
D\(\in\)BC
Do đó: AE//DB
Ta có: AE=DC
DC=DB
Do đó: AE=DB
Xét tứ giác AEDB có
AE//DB
AE=DB
Do đó: AEDB là hình bình hành
=>AD cắt EB tại trung điểm của mỗi đường
mà I là trung điểm của AD
nên I là trung điểm của EB
Chào em, em tự đặt câu hỏi rồi tự trả lời nhé.
Còn tái phạm là sẽ xóa bài + trừ GP để cảnh cáo đó.
Em có thể hỏi bài thoải mái, nhưng nếu hỏi xong tự mình trả lời sẽ là gian lận buff GP.
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a: Xét tứ giác ADCE có
I là trung điểm của AC
I là trung điểm của DE
Do đó: ADCE là hình bình hành
mà AD=CD
nên ADCE là hình thoi
a, O là trung điểm của AC (gt)
E đối xứng với D qua O (gt) => O là trung điểm của DE (đn)
xét tứ giá AECD
=> AECD là hình bình hành
Tam giác ABC cân tại A có AD là phân giác => AD là đường cao => AD _|_ BC => góc ADC = 90
=> AECD là hình chữ nhật (dh)
b, tam giác ABC cân tại A (gt)
AD là phân giác (Câu a)
=> AD đồng thời là đường trung tuyến của tam giác ABC (đl)
=> D là trung điểm của BC (đn)
=> BD = BC : 2 (đl)
BC = 6 cm
=> DB = 3 cm
xét tam giác ABD vuông tại D => AB^2 = AD^2 + BD^2
AB = 5 CM
=> 5^2 = 3^2 + AD^2
=> 25 = 9 + AD^2
=> AD^2 = 16
=> AD = 4 do AD > 0
tự tính S
c, ACDE là hình chữ nhật (Câu a)
để ADCE là hình vuông
<=> AD = DC
<=> tam giác ADC cân tại D mà góc ADC = 90
<=> góc ACD = 45
<=> tam giác ABC vuông cân tại A
vậy cần thê đk là vuông
a: Xét tứ giác ADCE có
O là trung điểm chung của AC và DE
góc ADC=90 độ
Do đó: ADCE là hình chữ nhật
b: Xét tứ giác AEDB có
AE//DB
AE=DB
Do đó: AEDB là hình bình hành
c:BD=CD=BC/2=6cm
AO=OD=10/2=5cm
AD=8cm
P=(5+5+8)/2=18/2=9cm
\(S=\sqrt{9\cdot\left(9-8\right)\left(9-5\right)\left(9-5\right)}=\sqrt{9\cdot1\cdot4\cdot4}=3\cdot2\cdot2=12\left(cm^2\right)\)
a: Xét tứ giác ADCE có
O là trung điểm chung của AC và DE
góc ADC=90 độ
Do đó: ADCE là hình chữ nhật
b: Xét tứ giác AEDB có
AE//DB
AE=DB
Do đó: AEDB là hình bình hành
c:BD=CD=BC/2=6cm
AO=OD=10/2=5cm
AD=8cm
P=(5+5+8)/2=18/2=9cm
\(S=\sqrt{9\cdot\left(9-8\right)\left(9-5\right)\left(9-5\right)}=\sqrt{9\cdot1\cdot4\cdot4}=3\cdot2\cdot2=12\left(cm^2\right)\)
+ Trong tam giác cân , đường trung tuyến ứng zs 1 cạnh cx là đường trung trực
=> Góc ABC =90 độ (1)
ta có \(AM=MC\left(\right)\)do M là trung điểm của ac
\(DM=ME\)do E đối xứng D qua M
=> tứ giác AECD là hbh(2)
từ 1 zà 2 suy rea
tú giác ADCE là hcn