K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

hình bạn tự vẽ nha

a) Xét tam giác ABB' và tg HBC' có

góc AB'B= HC'B

và góc ABB' chung

=> tg ABB' đồng dạng với tg HBC'(g-g)

=> BH/AB = BC'/BB'

=> BH.BB'=BC'.BA

Tương tự CB'.CA=CH.CC'

và BH.BB'=BA'.BC (1)

và CH.CC'=CA'.BC(2)

cộng 1 và 2 => BH.BB'+CH.CC'=BC2

nên BC'.BA+CB'.CA=BC2

8 tháng 4 2020

*hinh tu ve*

Xét phép vị tự quay S có tâm B, góc quay (BM,BA) \(\left(mol\pi\right)\)và tỉ số \(k=\frac{BM}{BA}\)

Ta có S: \(M\rightarrow A,C\rightarrow H\in BN\)

Khi đó: (HN,HC) = (AB,AM) = ((AN,AC) \(\left(mol\pi\right)\)

Nên A,N,C, H đồng viên. Theo định lý Ptolemy ta có: 

HB.AC=AC(BH+NH)=AC.BH+AN.CH+AH.CN

Lại theo tính chất của phép tự vị quay thì \(k=\frac{BA}{BM}=\frac{HC}{AM}=\frac{HA}{CM}=\frac{HB}{BC}\)

\(\Rightarrow HC=\frac{AM\cdot AB}{BM};BH=\frac{AB\cdot BC}{BM};HA=\frac{AB\cdot MC}{BM}\)

\(\Rightarrow\frac{AB\cdot BC}{BM}\cdot AC=AC\cdot BN+\frac{AM\cdot AB}{BM}\cdot AN+\frac{AB\cdot MC}{BM}\cdot CN\)

hay \(\frac{AM\cdot AN}{AB\cdot AC}+\frac{BM\cdot BN}{BC\cdot BA}+\frac{CM\cdot CN}{CA\cdot CB}=1\)

20 tháng 6 2021

a) Ta có: \(AB.sinC+AC.cosC=AB.\dfrac{AB}{BC}+AC.\dfrac{AC}{BC}=\dfrac{AB^2}{BC}+\dfrac{AC^2}{BC}\)

\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)

b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) nội tiếp

\(\Rightarrow EF=AH\Rightarrow EF.BC.AE=AH.BC.AE\)

\(=AB.AC.AE\left(AB.AC=AH.BC=2S_{ABC}\right)=AE.AB.AC\)

\(=AH^2.AC=AF.AC.AC=AF.AC^2\)

c) Ta có: \(AH.BC.BE.CF=AB.AC.BE.CF=BE.BA.CF.CA\)

\(=BH^2.CH^2=\left(BH.CH\right)^2=\left(AH^2\right)^2=AH^4\)

\(\Rightarrow AH^3=BC.BE.CF\)

Vì AEHF là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AE=HF\\AF=EH\end{matrix}\right.\)

Vì \(BE\parallel HF\) \(\Rightarrow\angle CHF=\angle CBA\)

Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)

\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{EH}=\dfrac{HF}{FC}\Rightarrow\dfrac{BE}{AF}=\dfrac{AE}{CF}\)

\(\Rightarrow BE.CF=AE.AF\Rightarrow BC.AE.AF=BC.BE.CF=AH^3\)

28 tháng 4 2023

- Dựng đường kính AK của (O).

- △ACK nội tiếp đường tròn đường kính AK nên △ACK vuông tại C.

- Xét △AHB và △ACK có: \(\left\{{}\begin{matrix}\widehat{AHB}=\widehat{ACK}=90^0\\\widehat{ABH}=\widehat{AKC}\left(=\dfrac{1}{2}sđ\stackrel\frown{BC}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AHB\sim\Delta ACK\left(g-g\right)\)

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{AK}\Rightarrow AH=\dfrac{AB.AC}{2R}\)

\(S_{ABC}=\dfrac{AH.BC}{2}=\dfrac{\dfrac{AB.AC}{2R}.BC}{2}=\dfrac{AB.AC.BC}{4R}\)

6 tháng 6 2018

ABCDEHcba

a) Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

\(\widehat{NAC}\) chung

Do đó: ΔAMB∼ΔANC(g-g)

Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét ΔAMN và ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)

\(\widehat{NAM}\) chung

Do đó: ΔAMN\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{AMN}=\widehat{ABC}\)(hai góc tương ứng)

b) Gọi giao điểm của AH và BC là K

Xét ΔCHK vuông tại K và ΔCBN vuông tại N có 

\(\widehat{HCK}\) chung

Do đó: ΔCHK∼ΔCBN(g-g)

Suy ra: \(\dfrac{CH}{CB}=\dfrac{CK}{CN}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CH\cdot CN=CB\cdot CK\)

Xét ΔBHK vuông tại K và ΔBCM vuông tại M có 

\(\widehat{HBK}\) chung

Do đó: ΔBHK∼ΔBCM(g-g)

Suy ra: \(\dfrac{BH}{BC}=\dfrac{BK}{BM}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BH\cdot BM=BC\cdot BK\)

Ta có: \(BH\cdot BM+CH\cdot CN\)

\(=BC\cdot BK+BC\cdot CK\)

\(=BC^2=a^2\)(đpcm)