Chứng minh rằng 20 +21 +22 +...+25n-3 +25n-2 +25n-1 chia hết cho 31 nếu n là số nguyên dương bất kif
help me please
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100
c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)
vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3
Mà(2, 3) = 1
⇒n(n-1)(n-2) chia hết cho 2.3 = 6
n^3 - 25n + 60
= n^3 - n - 24n + 60
= n.(n^2 - 1) - 24n + 60
= n.(n - 1).(n + 1) - 24n + 60
Vì n.(n - 1).(n + 1) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1 => n.(n - 1).(n + 1) chia hết cho 6
Lại có: -24n + 60 chia hết cho 6
Do đó, n^3 - 25n + 60 chia hết cho 6 (đpcm)
Ta có: \(25n^5-5n^3-20n=5\left(n-1\right)n\left(n+1\right)\left(5n^2+4\right)\)(1)
Ta thấy (1) chia hết cho 5 (2)
(1) có 3 số tự nhiên liên tiếp nên chia hết cho 3 (3)
Ta chứng minh (1) chia hết cho 8
Với n lẻ thì (n - 1) và (n + 1) là hai số chẵn liên tiếp nên sẽ có 1 số chia hết cho 2 còn 1 số chia hết cho 4 nên (1) sẽ chia hết cho 8
Với n chẵn thì ta có n chia hết co 2 và (5n2 + 4) = (5.4k2 + 4) =4(5k2 + 1) chia hết cho 4 nên (1) chia hết cho 8
=> (1) chia hết cho 8 (4)
Từ (2), (3), (4) ta có (1) chia hết cho 5.3.8 = 120
Đặt A=\(2^0+2^1+2^2+....+2^{5n-3}+2^{5n-2}+2^{5n-1}\)
\(\Leftrightarrow A=\left(2^0+2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{5n+2}+2^{5n+1}+2^{5n}+2^{5n-1}+2^{5n-2}+2^{5n-3}\right)\)
\(\Leftrightarrow A=2^0\left(1+2+2^2+2^3+2^4\right)+....+2^{5n+2}\left(1+2+2^2+2^3+2^4\right)\)
\(\Leftrightarrow A=2^0\cdot31+2^5\cdot31+....+2^{5n+2}\cdot31\)
\(\Leftrightarrow A=31\cdot\left(2^0+2^5+...+2^{5n+2}\right)\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
quynh oi dpcm la gi vay?