K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2020

\(m^5-m=m\left(m^4-m\right)=\left(m-1\right)m\left(m+1\right)\left(m^2+1\right)\)

Nếu m chia hết cho 5 thì ko nói làm gì

Nếu m chia 5 dư 1 thì m-1 chia hết cho 5

Nếu m chia 5 dư 4 thì m+1 chia hết cho 5

Nếu m chia 5 dư 2 thì \(m^2\) chia 5 dư 4 \(\Rightarrow m^2+1⋮5\)

Nếu m chia 5 dư 3 thì \(m^2\) chia 5 dư 4 \(\Rightarrow m^2+1⋮5\)

thầy ơi, sử dụng định lí nhỏ fermat được không thầy?

11 tháng 6 2020

Xét m,n có 1 số chia hết cho 5 thì A \(⋮\)5

Xét m,n  đều không chia hết cho 5

Ta có : với a \(⋮̸\)5 thì a có dạng : \(5k\pm1;5k\pm2\)

\(\Rightarrow a^4=\left(5k\pm1\right)^4=B\left(5\right)+1\)chia 5 dư 1

\(a^4=\left(5k\pm2\right)^4=B\left(5\right)+16=B\left(5\right)+1\)chia 5 dư 1

từ đó suy ra \(m^4\)chia 5 dư 1 ; \(n^4\)chia 5 dư 1

\(\Rightarrow m^4-n^4\)chia hết cho 5

\(\Rightarrow A⋮5\)

Vậy ....

11 tháng 6 2020

Ta có: \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)

Xét \(a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a^2-1\right)\left(a^2-4\right)+5a\left(a^2-1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a^2-1\right)⋮5\)với mọi a nguyên bất kì

=> \(nm\left(m^4-1\right)=n\left[m\left(m^4-1\right)\right]⋮5\)với m nguyên 

\(nm\left(m^4-1\right)=m\left[n\left(n^4-1\right)\right]⋮5\)với n nguyên 

=> \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\) chia hết cho 5.

AH
Akai Haruma
Giáo viên
21 tháng 8 2024

Lời giải:

$a\vdots c\Rightarrow am\vdots c$ với mọi $m$ nguyên.

$b\vdots c\Rightarrow bn\vdots c$ với mọi $n$ nguyên.

$\Rightarrow am+bn\vdots c$ (đpcm)

2 tháng 11 2021

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)

\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)

8 tháng 10 2017

bài này làm thế nào 

hiền k hộ ta

13 tháng 2 2019

 Phân tích 5=1.5
nếu n^5+5n^3+4n muốn chja hết cho 5thì phải chja hết cho lân lượt 8,5,3 
ta chứng minh như sau: 
n^5-5n^3+4n= 
(n-2)(n-1)n(n+1)(n+2) 
chja hết cho 8 vì tích 2 số chẵn liên tiếp chia het cho 8, gjả sử n lẻ=>(n-1)(n+1) chja het 8, nếu n chẵn =>n(n+1) chja het 8, 
.cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5, 
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3. 
Từ chứng mjh trên suy ra dfcm cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5, 
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3. 
Từ chứng mjh trên suy ra dfcm

13 tháng 2 2019

bạn ơi +5^3 chứ không phải -5^3

12 tháng 7 2023

\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\)

mà \(-5n⋮5\left(n\in Z\right)\)

⇒đpcm

12 tháng 7 2023

\(n\left(2n-3\right)-2n\left(n+1\right)=\)

\(=2n^2-3n-2n^2-2n=-5n⋮5\)