Giải phương trình:
2(x-3)+5x(x-1)=5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>|5x-2|=|2x-3|
=>5x-2=2x-3 hoặc 5x-2=-2x+3
=>3x=-1 hoặc 7x=5
=>x=5/7 hoặc x=-1/3
b: =>|5x-2|-|2x+2|=3x+5
TH1 x<-1
PT sẽ là 2-5x+2x+2=3x+5
=>-3x+4=3x+5
=>-6x=1
=>x=-1/6(loại)
TH2: -1<=x<2/5
Pt sẽ là 2-5x-2x-2=3x+5
=>-7x=3x+5
=>-4x=5
=>x=-5/4(loại)
Th3: x>=2/5
PT sẽ là 5x-2-2x-2=3x+5
=>3x-4=3x+5
=>0x=9(loại)
1) -2(x - 3) + 5x (x - 1) = 5x (x + 1)
<=> -2x + 6 + 5x2 - 5x = 5x2 + 5x
<=> 6 = 5x2 + 5x + 2x - 5x2 + 5x
<=> 6 = 12x
<=> \(\dfrac{6}{12}\) = x = 0,5
vậy tập nghiệm S ={0,5}
2) 7 - (2x + 4) = -(x + 4)
<=> 7 - 2x - 4 = -x - 4
<=> 7 - 4 + 4 = -x + 2x
<=> 7 = x
vậy tập nghiệm S ={7}
ĐKXĐ:
\(\left(2x+2-2\sqrt{5x-1}\right)+\left(\sqrt{5x^2+x+3}-\left(2x+1\right)\right)+x^2-3x+2=0\)
\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{x+1+\sqrt{5x-1}}+\dfrac{x^2-3x+2}{\sqrt{5x^2+x+3}+2x+1}+x^2-3x+2=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\dfrac{2}{x+1+\sqrt{5x-1}}+\dfrac{1}{\sqrt{5x^2+x+3}+2x+1}+1\right)=0\)
\(\Leftrightarrow x^2-3x+2=0\)
2(x-3)+5x(x-1)=5x2
<=> 2x-6+5x2-5x=5x2
<=> (2x-5x)+(5x2-5x2)=6
<=> -3x=6
<=> x=-2
2x - 6 + 5x2 - 5x = 5x2 <=> -3x - 6 = 0 <=> x + 2 = 0 <=> x = -2
Đặt \(1-x^2\)=a,7-5x=b
\(\Rightarrow\)\(x^2-5x+6=b-a\)
\(\Rightarrow\)\(\left(b-a\right)^3=b^3-a^3\)
\(\Rightarrow\)\(3ab\left(b-a\right)=0\)
\(\Rightarrow\orbr{\begin{cases}ab=0\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\\a=b\end{cases}}\)
`|5x| = - 3x + 2`
Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :
`5x =-3x+2`
`<=> 5x +3x=2`
`<=> 8x=2`
`<=> x= 2/8=1/4` ( thỏa mãn )
Nếu `5x<0<=>x<0` thì phương trình trên trở thành :
`-5x = -3x+2`
`<=>-5x+3x=2`
`<=> 2x=2`
`<=>x=1` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=1/4`
__
`6x-2<5x+3`
`<=> 6x-5x<3+2`
`<=>x<5`
Vậy bpt đã cho có tập nghiệm `x<5`
2(x-3)+5x(x-1)=5x
<=> 2x - 6 + 5x2 - 5x - 5x = 0
<=> 5x2 - 8x - 6 = 0
Đến đây dùng delta giải nốt nha
Study well
\(2\left(x-3\right)+5x\left(x-1\right)=5x\)
\(2x-6+5x.x-5x-5x=0\)
\(x\left(2-6+5-5-5\right)=0\)
\(x.\left(-9\right)=0\)
\(x=0\)
Vậy pt có nghiệm = { 0 }