K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Ta có: \(\frac{1}{5!}=\frac{1}{1\cdot2\cdot3\cdot4\cdot5}< \frac{1}{3\cdot4\cdot5}\)

\(\frac{1}{6!}< \frac{1}{1\cdot2\cdot3\cdot4\cdot5\cdot6}< \frac{1}{4\cdot5\cdot6}\)

..............

\(\frac{1}{2019!}=\frac{1}{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2019}< \frac{1}{2017\cdot2018\cdot209}\)

Do đó 

\(C< 1+\frac{1}{2}+\frac{1}{2\cdot3\cdot4}+\frac{1}{4\cdot5\cdot6}+....+\frac{1}{2017\cdot2018\cdot2019}\)

\(C< \frac{3}{2}+\frac{1}{2}\left(\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+.....+\frac{2019-2017}{2017\cdot2018\cdot2019}\right)\)

\(C< \frac{3}{2}+\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2018\cdot2019}\right)< \frac{3}{2}+\frac{1}{2}\cdot\frac{1}{1\cdot2}\)

\(\Rightarrow C< \frac{7}{4}\)

Nguồn: Nock Nock

22 tháng 2 2020

\(C=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}\)

\(=\frac{1}{1}+\frac{1}{1.2}+\frac{1}{1.2.3}+...+\frac{1}{1.2.3...2019}\)

\(=\frac{1}{1}+\frac{1}{1}.\frac{1}{2}+\frac{1}{1}.\frac{1}{2}.\frac{1}{3}+...+\left(\frac{1}{1}.\frac{1}{2}.\frac{1}{3}...\frac{1}{2018}.\frac{1}{2019}\right)\)

\(=\left(1.1.1....1.1\right)+\left(\frac{1}{2}.\frac{1}{2}.\frac{1}{2}...\frac{1}{2}.\frac{1}{2}\right)+\left(\frac{1}{3}.\frac{1}{3}.\frac{1}{3}...\frac{1}{3}.\frac{1}{3}\right)+...+\left(\frac{1}{2018}.\frac{1}{2018}\right)+\frac{1}{2019}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}+\frac{1}{2019}\)

Nhận xét rằng:

\(1< \frac{7}{8076};2< \frac{7}{8076};3< \frac{7}{8076};...;\frac{1}{1154}>\frac{7}{8076};\frac{1}{1155}>\frac{7}{8076};...;\frac{1}{2018}>\frac{7}{8076};\frac{1}{2019}>\frac{7}{8076}\)

Do đó:

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}+\frac{1}{2019}>\frac{7}{8076}+\frac{7}{8076}+...+\frac{7}{8076}\)

Vì tổng C có 2019 số hạng, suy ra \(C>2019.\frac{7}{8076}=\frac{7}{4}\)

12 tháng 3 2020

Tham khảo nhé

Câu hỏi của Assassin_07 - Toán lớp 7 - Học toán với OnlineMath

13 tháng 3 2020

Nguyễn Trần Nhật Anh , đâu có cầnnn

12 tháng 8 2019

B = \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}...+\frac{1}{1+2+3+...+2019}\)

    = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2019\times1010}\)

    = \(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2019\times2020}\right)\)

   = \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{2019\times2020}\right)\)

  = \(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)

  = \(2\times\left(\frac{1}{2}-\frac{1}{2020}\right)\)

\(=2\times\frac{1009}{2020}\)

\(=\frac{1009}{1010}< \frac{1010}{1010}=1\)

\(\Rightarrow B< 1\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2020

Lời giải:

Ta có:
\(\frac{1}{5!}=\frac{1}{1.2.3.4.5}< \frac{1}{3.4.5}\)

\(\frac{1}{6!}< \frac{1}{4.5.6}\)

.........

\(\frac{1}{2019!}< \frac{1}{2017.2018.2019}\)

Do đó:
\(C< 1+\frac{1}{2}+\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{2017.2018.2019}\)

\(C< \frac{3}{2}+\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2019-2017}{2017.2018.2019}\right)\)

\(C< \frac{3}{2}+\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2018.2019}\right)< \frac{3}{2}+\frac{1}{2}.\frac{1}{1.2}\)

\(C< \frac{7}{4}\)

11 tháng 3 2020

!

28 tháng 3 2020

\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)

=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)

\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)

=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)

=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)

=>\(A>B\)

cách này mình tự nghĩ 

28 tháng 3 2020

thank you \(v\text{er}y^{1000000000000}\)much

17 tháng 2 2020

có gì đó sai sai

17 tháng 2 2020

sao sai bạn

25 tháng 12 2018

XD: best tiếng anh chuyển sang toán ak!?

\(B1:\)

\(M=\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)...\left(1+\frac{7}{10800}\right)\)

\(=\frac{16}{9}\cdot\frac{27}{20}\cdot\frac{40}{33}\cdot\cdot\cdot\frac{10807}{10800}\)

\(=\frac{8.2}{9.1}\cdot\frac{9.3}{10.2}\cdot\frac{10.4}{11.3}\cdot\cdot\cdot\frac{57.51}{58.50}\)

\(=\frac{\left(8.9.10...57\right)\left(2.3.4...51\right)}{\left(9.10.11...58\right).\left(1.2.3...50\right)}\)

\(=\frac{8.51}{58.1}=\frac{204}{29}\)

Vậy.....

25 tháng 12 2018

\(M=\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)...\left(1+\frac{7}{10800}\right)\)

\(M=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}...\frac{10807}{10800}\)

\(M=\frac{8.2}{9.1}.\frac{9.3}{10.2}.\frac{10.4}{11.3}...\frac{107.101}{108.100}\)

\(M=\frac{\left(2.3.4...101\right)\left(8.9.10...107\right)}{\left(1.2.3...100\right)\left(9.10.11...108\right)}\)

\(M=\frac{101.8}{108}\)

\(M=\frac{202}{27}\)

k mình nha . câu 2 tí nữa mình gửi

15 tháng 7 2017

bé hon 2

15 tháng 7 2017

ta có:S=\(\frac{481}{280}=1,717857143\)

=>S<2

vậy S<2

5 tháng 7 2020

Cái bài này bạn muốn làm thì bạn có thể lấy A-B hoặc B-A nếu nó ra kết quả dương thì tức là A>B hoặc B>A  nhưng bạn thử cái A-B nhé vì ta sẽ chứng minh được A>B nhé nhưng bạn không thể lấy trực tiếp được mà hay cho lên thành 1011A và 1010B để cho nó tròn và bạn sẽ thực hiện phép tính 1011A -1010B và sẽ ra bằng 1/1011 +1/1012+....+1/2020 bạn có thể lên mạng để họ dạy cách tính ra sao rồi bạn sẽ chuyển A sang vế phải và lúc đó vế trái sẽ là 1010A-1010B tức là bằng 1010x(A-B) nghĩa là bạn phải chứng minh vế phải lớn hơn 0 và bạn cứ tính ra vế phải không phải là ra một kết quả nhưng mà kiểu chứng minh dấu lớn hơn ấy bạn cứ làm đi nó cũng sẽ ra nhé .