K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 2 2020

\(=sin^2a\left(1+cot^2a\right)=sin^2a\left(1+\frac{cos^2a}{sin^2a}\right)=sin^2a\left(\frac{sin^2a+cos^2a}{sin^2a}\right)=\frac{sin^2a}{sin^2a}=1\)

21 tháng 2 2020

cảm ơn bạn nhiều ạ

26 tháng 9 2017

\(S=\frac{cos^2a-sin^2b}{sin^2a.sin^2b}-cot^2a.cot^2b=\frac{cos^2a-sin^2b}{sin^2a.sin^2b}-\frac{cos^2a.cos^2b}{sin^2a.sin^2b}\)

\(=\frac{cos^2a-sin^2b-cos^2a.cos^2b}{sin^2a.sin^2b}=\frac{cos^2a-cos^2a.cos^2b-sin^2b}{sin^2a.sin^2b}\)

\(=\frac{cos^2a\left(1-cos^2b\right)-sin^2b}{sin^2a.sin^2b}=\frac{cos^2a.sin^2b-sin^2b}{sin^2a.sin^2b}\)

\(=\frac{sin^2b\left(cos^2a-1\right)}{sin^2a.sin^2b}=\frac{-sin^2a.sin^2b}{sin^2a.sin^2b}=-1.\)

\(P=\dfrac{\sin60^0+\tan^230^0}{\cos30^0-\cot60^0}=\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{3}\right):\left(\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{3}\right)\)

\(=\dfrac{3\sqrt{3}+2}{6}:\dfrac{3\sqrt{3}-2\sqrt{3}}{6}\)

\(=\dfrac{3\sqrt{3}+2}{\sqrt{3}}=\dfrac{6+2\sqrt{3}}{3}\)

30 tháng 10 2020

a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2a=1-\sin^2\alpha=1-\left(\frac{\sqrt{3}}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow\cos\alpha=\frac{1}{2}\)(do \(\cos\alpha>0\))

b) \(Q=\sin^2\alpha+\cot^2\alpha.\sin^2\alpha=\sin^2\alpha\left(1+\cot^2\alpha\right)\)\(=\sin^2\alpha\left(1+\frac{\cos^2\alpha}{\sin^2\alpha}\right)=\sin^2\alpha.\frac{\sin^2\alpha+\cos^2\alpha}{\sin^2\alpha}=1\)

30 tháng 10 2020

a) \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)

5 tháng 6 2020

\(sin^2a+cos^2a-sin^4a-2cos^2a+sin^2a\)

\(=2sin^2a-cos^2a-sin^4a\)

\(=2sin^2a-cos^2a-\left(\frac{1-cos2a}{2}\right)^2\)

khai triển ra rồi quy đồng lên

\(=\frac{8sin^2a-4cos^2a-1+2cos2a-cos^22a}{4}\)

Mà \(2cos2a=2\left(cos^2a-1\right)=4cos^2-2\)

\(\Rightarrow\frac{8sin^2a-cos^22a-3}{4}\)

Mà \(-cos^22a=sin^22a-1=4sin^2cos^2-1\)

\(\Rightarrow\frac{8sin^2a+4sin^2a.cos^2a-4}{4}\)

\(=\frac{4sin^2a.\left(2-cos^2a\right)-4}{4}\)

\(=sin^2a\left(1+sin^2a\right)-1\)

\(=sin^4a-cos^2a\)

5 tháng 6 2020

viết lại đề đi cậu ơi

28 tháng 4 2019

\(A=\frac{sin^2a-tan^2a}{cos^2a-cot^2a}=\frac{sin^2a-\frac{sin^2a}{cos^2a}}{cos^2a-\frac{cos^2a}{sin^2a}}=\frac{\frac{sin^2a\left(cos^2a-1\right)}{cos^2a}}{\frac{cos^2a\left(sin^2a-1\right)}{sin^2a}}=\frac{sin^4a.\left(-sin^2a\right)}{cos^4a.\left(-cos^2a\right)}=\frac{sin^6a}{cos^6a}=tan^6a\)

9 tháng 9 2018

\(\left(1+\frac{\sin^2}{\cos^2}\right)cos^2-\left(1+\frac{cos^2}{sin^2}\right)sin^2.\)

=> \(\frac{cos^2+sin^2}{cos^2}\left(cos^2\right)-\frac{sin^2+cos^2}{sin^2}\left(sin^2\right)\)

=> 1-1 =0

24 tháng 9 2020

\(=\frac{1}{cos^2a}\cdot cos^2a+\frac{1}{sin^2a}\cdot sin^2a\) 

\(=1+1\) 

\(=2\)