Tìm các số nguyên a và b biết:
a) a2 + 3b2 = 21
b) ( 2a + 3 )2 + ( b - 2 )2 = 29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{3b^2}{27}=\dfrac{2c^2}{32}=\dfrac{a^2+3b^2-2c^2}{4+27-32}=\dfrac{-16}{-1}=16\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=64\\b^2=144\\c^2=256\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\pm8\\b=\pm12\\c=\pm16\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)\in\left\{\left(8;12;16\right),\left(-8;-12;-16\right)\right\}\)
Cách khác:
Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=4k\end{matrix}\right.\)
Ta có: \(a^2+3b^2-2c^2=-16\)
\(\Leftrightarrow4k^2+27k^2-32k^2=-16\)
\(\Leftrightarrow k^2=16\)
Trường hợp 1: k=4
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=8\\b=3k=12\\c=4k=16\end{matrix}\right.\)
Trường hợp 2: k=-4
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=-8\\b=3k=-12\\c=4k=-16\end{matrix}\right.\)
Lời giải:
$a^2-2ab-3b^2\geq 0$
$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$
$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$
$\Leftrightarrow (a+b)(a-3b)\geq 0$
$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)
$\Leftrightarrow a\geq 3b$
Xét hiệu:
$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$
$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$
$\Rightarrow P\geq \frac{37}{3}$
Vậy $P_{\min}=\frac{37}{3}$
\(a^2=3b^2\)
Vì \(a^2;b^2\) là số chính phương
\(\Rightarrow a^2⋮̸3b^2\)
Nên không tồn tại a;b nguyên dương thỏa đẳng thức \(a^2=3b^2\)
Phần lỗi màu đỏ là a2 không thể chia cho 3 có thương là b2 là số chính phương
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=21
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{21}{7}=3\)
Do đó: x=6; y=15
c) Ta có: \(\dfrac{x}{2}=\dfrac{y}{7}\)
mà x+y=18
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{7}=\dfrac{x+y}{2+7}=\dfrac{18}{9}=2\)
Do đó: x=4; y=14
a) Ta có M = ( b + 2 ) ( 3 b − 10 ) + 5 b + 2 = 3 b − 10 + 5 b + 2 . Ta có, với b nguyên thì M nhận giá trị nguyên khi và chỉ khi b + 2 nhận giá trị ước của 5. Đáp số: b ∈ − 7 ; − 3 ; − 1 ; 3
b) Tương tự, ta có b ∈ − 3 ; 0 ; 1 ; 2 ; 4 ; 5 ; 6 ; 9
a) phương pháp chặn (kết hợp cả chia hết )
a^2 +3b^2 =21
=> a^2 chia hết cho 3 mà 3 là số nguyên tố
=> a^2 chia hết cho 9(1)
Lại có a^2 <=21 (do 3b^2 >=0 ) (2)
Từ (1),(2) => a^2 =0 hoặc 9
Dễ dàng suy ra được a=0 (loại) ; a^2=9 -> b=2 hoặc -2 và a=3 hoặc -3
Vậy có 4 cặp a,b nguyên t/m
b) Phương pháp
C1: chặn như phần a : (2a+3) lẻ -> xét TH
C2 : giông làm mò : 29 =2^2+5^2 mà (2a+3) lẻ
=> (2a+3)^2=5^2 ; (b-2)^2 =2^2 -> 4 cặp a,b t/m