Bạn Mai vẽ tam giác ABC có AB=4cm, AC= 8cm, BC= 9cm rồi đo thấy góc A=90 độ và kết luận rằng tam giác ABC □. Điều đó có đúng ko?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}BC^2=9^2=81\\AC^2+AB^2=8^2+4^2=80\end{matrix}\right.\)
\(\Rightarrow BC^2\ne AB^2+AC^2\) (vì \(81\ne80\))
\(\Rightarrow\) \(\Delta ABC\) không phải là tam giác vuông.
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5cm\)
Theo định lí Pytago tam giác MNP vuông tại N
\(NP=\sqrt{MP^2-MN^2}=6cm\)
b, Xét tam giác ABC và tam giác NPM có
^BAC = ^PNM = 900
\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)
Vậy tam giác ABC ~ tam giác NPM ( c.g.c )
a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có
AB/NP=AC/NM
Do đó: ΔABC\(\sim\)ΔNPM
1) coi lại đề
2) a) tam giác ABD và tam giác ABC có
góc A=góc A, góc ABD=góc ACB
=> tam giác ABD đồng dạng tam giác ACB (g-g)
b) ta có tam giác ABD đồng dạng tam giác ACB=> AB/AC=AD/AB=> 6/9=AD/6=> AD=(6.6):9=4