K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1; 3k+2

Nếu p = 3k+1 thì p = 7( vì 3.2+1 = 7 mà 7 cũng là số nguyên tố) khi đó p2020+1= 72020+1 = ( 74)505+1= (.....1)505+1 = (....1)+1 = (...2)

Mà chỉ có 1 số nguyên tố chẵn duy nhất là 2 nên loại

Nếu p = 3k+2 thì p = 5 ( vì 3.1+2 =5 mà 5 cũng là số nguyên tố) khi đó  p2020+1= 52020+1 = ( 52)1010+1= (.....5)505+1 = (....5)+1 = (...6) loại

Vậy...

Mk nghĩ là như này tại lúc học mk cũng trình bày như này sai j mong bn chỉnh hộ

để lát nữa mình gọi cho chú gv toán ở trường của bố mình

11 tháng 6 2020

Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3

Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)

Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3

=> đpcm

20 tháng 4 2016

p là snt >3 => p có dạng 3k+1 hoặc 3k+2

nếu p có dạng 3k+1 thì 4p-1= 4.(3k+1)-1= 12k +4-1= 12k+3 là hợp số

p có dạng 3k+2 thì 4p+1= 4.(3k+2)+1= 12k+8+1= 12k+9 là hợp số

từ đó kết luận

30 tháng 5 2018

Bài 2 :

Với p là số nguyên tố lớn hơn 3 => p chỉ có dạng hoặc 3k + 1 hoặc 3k + 2

+ Nếu p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\)3 và lớn hơn 3 là hợp số ( loại )

Vì p ko có dạng 3k + 1 nên p có dạng 3k + 2

Với p = 3k + 2 thì 4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 là hợp số

Vậy ...

Bài 1 :

Ta có \(1994^{100}-1,1994^{100},1994^{100}+1\) là 3 số tự nhiên liên tiếp nên phải có 1 số chia hết cho 3 mà \(1994^{100}\)có tổng các chữ số là \(1+9+9+4=123\)không chia hết 3 nên \(1994^{100}\)không chia hết cho 3 nên trong 2 số còn lại ít nhất có một số chia hết cho 3 ,số đó không thể là số nguyên tố 

Vậy \(1994^{100}-1\)và \(1994^{100}+1\)không thể đồng thời là số nguyên tố

Bài 2

Do P là số nguyên tố lớn hơn 3 nên 4p không chia hết cho 3 ,tương tự \(4p+2=2\left(2p+4\right)\)cũng không chia hết cho 3

Mà \(4p,4p+1,4p+2\)là 3 số tự nhiên liên tiếp nên ít nhất phải có 1 số chia hêt cho 3 .Do đó \(4p+1⋮3\)mà \(4p+1>13\)nên \(4p+1\)là hợp số 

Chúc bạn học tốt ( -_- )