K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 2 2020

BPT đã cho có tập nghiệm là R khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta=\left(2m-1\right)^2-4m< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\4m^2-8m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\frac{2-\sqrt{3}}{2}< m< \frac{2+\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

16 tháng 10 2018

Đáp án: C

3 tháng 4 2017

6 tháng 11 2019

Bất phương trình x2-3x+2  ≤ 0 ⇔ 1 ≤ x ≤ 2

Bất phương trình mx2+(m+1) x+m+1   ≥ 0  

Xét hàm số  f ( x ) = - x - 2 x 2 + x + 1   ,   1 ≤ x ≤ 2

Có  f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2   > 0   ∀ x ∈ 1 ; 2

Yêu cầu bài toán  ⇔ m ≥ m a x [ 1 ; 2 ]   f ( x ) ⇔ m ≥ - 4 7

Chọn C.

5 tháng 10 2017

Giải bất phương trình x2- 3x+ 2≤ 0 ta được 1≤x≤2.

Bất phương trình  mx2+ (m+ 1) x+ m+1≥0

⇔ m ( x 2 + x + 1 ) ≥ - x - 2 ⇔ m ≥ - x - 2 x 2 + x + 1

Xét hàm số f ( x ) = - x - 2 x 2 + x + 1   với 1≤ x≤ 2

Có đạo hàm  f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2 > 0 , ∀ x ∈ 1 ; 2

Yêu cầu bài toán  ⇔ m ≥ m a x [ 1 ; 2 ]   f ( x ) ⇔ m ≥ - 4 7

Chọn C.

20 tháng 9 2019

2 tháng 8 2017

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Lời giải:

PT có 2 nghiệm pb khi:

$\Delta'=m^2+m(2m+1)>0\Leftrightarrow m(3m+1)>0\Leftrightarrow m>0$ hoặc $m< \frac{-1}{3}(*)$

Theo định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{-(2m+1)}{m}\end{matrix}\right.\) . Khi đó:

$x_1^2+2x_1x_2^2+3x_2^2=4x_1+5x_2-1$

$\Leftrightarrow (x_1+x_2)^2+2x_2^2=4(x_1+x_2)+x_2-1$

$\Leftrightarrow 4+2x_2^2=7+x_2$

$\Leftrightarrow 2x_2^2-x_2-3=0$

$\Leftrightarrow x_2=\frac{3}{2}$ hoặc $x_2=-1$

$x_2=\frac{3}{2}$ thì $x_1=\frac{1}{2}$

$\frac{-(2m+1)}{m}=x_1x_2=\frac{3}{4}\Leftrightarrow m=\frac{-4}{11}$
$x_2=-1$ thì $x_1=3$

$\frac{-(2m+1)}{m}=x_1x_2=-3\Leftrightarrow m=1$

(hai giá trị trên đều thỏa mãn)

13 tháng 3 2021

Ohh em làm cách khác vẫn ra thế này! Thầy nhiệt tình thật !

\(mx^2-2mx-1+2m< =0\)(1)

TH1: m=0

BPT (1) sẽ trở thành

\(0\cdot x^2-2\cdot0\cdot x-1-2\cdot0< =0\)

=>-1<=0(luôn đúng)

=>Nhận

TH2: m<>0

\(\text{Δ}=\left(-2m\right)^2-4\cdot m\cdot\left(2m-1\right)\)

\(=4m^2-8m^2+4m=-4m^2+4m\)

Để BPT (1) luôn đúng với mọi x thuộc R thì

\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-4m^2+4m< =0\\m< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-4m\left(m-1\right)< =0\\m< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-1\right)>=0\\m< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>=1\\m< =0\end{matrix}\right.\\m< 0\end{matrix}\right.\)

=>m<0

Do đó: m<=0

mà \(m\in Z;m\in\left(-10;10\right)\)

nên \(m\in\left\{-9;-8;...;-1;0\right\}\)

=>Số giá trị nguyên thỏa mãn là 10

16 tháng 3 2017

Đáp án: A

21 tháng 12 2017