K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 2 2020

BPT đã cho có tập nghiệm là R khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta=\left(2m-1\right)^2-4m< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\4m^2-8m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\frac{2-\sqrt{3}}{2}< m< \frac{2+\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

28 tháng 7 2021

\(mx^2-2\left(m+2\right)x+2m-1< 0\)

\(< =>mx^2-2\left(m+2\right)x+2m-1\ge0\)

\(a=m\ne0\)

\(\Delta=\left(2m+2\right)^2-4m\left(2m-1\right)\)

\(\Delta=4m^2+8m+4-8m^2+4m\)

\(\Delta=12m-4m^2+4\)

\(< =>\hept{\begin{cases}a>0\\\Delta\le0\end{cases}\hept{\begin{cases}m>0\\12m-4m^2+4\le0\end{cases}\hept{\begin{cases}m>0\\m=\left[\frac{3-\sqrt{13}}{2};\frac{3+\sqrt{13}}{2}\right]\end{cases}}}}\)

\(< =>m=(0;\frac{3+\sqrt{13}}{2}]\)

vậy m vô số nghiệm để bpt vô nghiệm

 

a: Trường hợp 1: m=0

Bất phương trình sẽ là \(0x^2+3\cdot0\cdot x+0+1>0\)

=>1>0(luôn đúng)

Trường hợp 2: m<>0

\(\text{Δ}=\left(3m\right)^2-4m\left(m+1\right)\)

\(=9m^2-4m^2-4m=5m^2-4m\)

Để phương trình có nghiệm đúng với mọi số thực x thì \(\left\{{}\begin{matrix}m\left(5m-4\right)< 0\\m>0\end{matrix}\right.\Leftrightarrow0< m< \dfrac{4}{5}\)

Vậy: 0<=m<4/5

b: Trường hợp 1: m=4

\(g\left(x\right)=\left(4-4\right)\cdot x^2+\left(2\cdot4-8\right)x+4-5=-1< 0\)(luôn đúng)

Trường hợp 2: m<>4

\(\text{Δ}=\left(2m-8\right)^2-4\left(m-4\right)\left(m-5\right)\)

\(=4m^2-32m+64-4\left(m^2-9m+20\right)\)

\(=4m^2-32m+64-4m^2+36m-80\)

=4m-16

Để bất phương trình luôn âm thì \(\left\{{}\begin{matrix}4m-16< 0\\m-4< 0\end{matrix}\right.\Leftrightarrow m< 4\)

Vậy: m<=4

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

30 tháng 1 2016

bpt (1) \(\Leftrightarrow x\in\left(-5;3\right)\)=> S1=(-5;3)

bpt (2):

Nếu m=-1 =>S2=\(\varnothing\)

Nếu m>-1 =>S2=\(\left[\frac{3}{m+1};+\infty\right]\)

Nếu m<-1 => S2=\(\left[-\infty;\frac{3}{m+1}\right]\)

Hệ có nghiệm \(\Leftrightarrow S1\cap S2\ne\varnothing\)

Nếu m=-1 =>\(S1\cap S2=\varnothing\)   (Loại)

Nếu m>-1 =>\(S1\cap S2\ne\varnothing\)

Nếu m<-1 =>\(S1\cap S2\ne\varnothing\)

30 tháng 1 2016

vì sao mà hệ có nghiệm thì S1 giao S2 phải khác tập hợp rỗng ? mà tại sao bạn lại biện luận bất phương trình như vậy ? 

30 tháng 3 2021

Cái này mình mới xét TH a#0, bạn xét thêm TH a=0 nữa nhé

 

31 tháng 1 2016

dốt