K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho 2 đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC ($B\in (O), C\in (O')$)a. Tính góc BACb. Tính BC.c. Gọi D là gđ của CA với đường tròn (O) (D khác A). CMR 3 điểm B,O,D thẳng hàngd. Tính BA, CA2. Cho đ B nằm giữa A và Csao cho AB=14cm, BC=28cm. Vẽ về 1 phía của AC các nửa đường tròn tâm I,K,O có đường kính theo thứ tự AB, BC, AC.Tính bán kính...
Đọc tiếp

1. Cho 2 đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC ($B\in (O), C\in (O')$)

a. Tính góc BAC

b. Tính BC.

c. Gọi D là gđ của CA với đường tròn (O) (D khác A). CMR 3 điểm B,O,D thẳng hàng

d. Tính BA, CA

2. Cho đ B nằm giữa A và Csao cho AB=14cm, BC=28cm. Vẽ về 1 phía của AC các nửa đường tròn tâm I,K,O có đường kính theo thứ tự AB, BC, AC.Tính bán kính đường tròn (M) tiếp xúc ngoài với các nửa đường tròn (I), (K), và tiếp xúc trong với nửa đường tròn (O).

3. Cho đường tròn (O) nội tiếp tam giác đều ABC. 1 tiếp tuyến của đường tròn cắt AB, AC theo thứ tự ở M và N.

a. Tính diện tích AMN biết BC=8cm, MN=3cm

b. CMR: $MN^2=AM^2+AN^2-AM.AN$

c*. Chứng minh rằng: $\frac{AM}{MB}+\frac{AN}{NC}=1$

0
NV
11 tháng 1

Em coi lại đề, từ điểm M làm sao vẽ các tiếp tuyến AB, AC được nhỉ? Sau đó lại đường kính AC nữa, nghĩa là AC vừa là tiếp tuyến vừa là đường kính?

 

11 tháng 1

em vừa sửa lại đề rồi ạ

15 tháng 1 2017

a, HS tự chứng minh

b, Ta có:  I A C ^ = I C A ^ => I M C ^ = I C M ^ nếu IM = IA = IC

c, Sử dụng hệ thức lượng cho ∆AMB ta dùng Pytago cho tam giác AMB

d, Kẻ GD//AC (D ∈ OC) => D cố định lại có OI ⊥ AC => OGDG 

=> G thuộc đường tròn đường kính OD cố định

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0