cho tam giác ABC có AB=AC. Từ B, C hạ BD vuông góc với AC; CE vuông góc với AB; BD cắt CE tại H. Chứng minh AH là tia phân giác của góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABH=ΔACK
a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))
Do đó: ΔACE=ΔAKE(Cạnh huyền-góc nhọn)
Suy ra: AC=AK(hai cạnh tương ứng) và EC=EK(hai cạnh tương ứng)
Ta có: AC=AK(cmt)
nên A nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EC=EK(cmt)
nên E nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AE là đường trung trực của CK
hay AE⊥CK(đpcm)
b) Ta có: ΔABC vuông tại C(gt)
nên \(\widehat{CAB}+\widehat{CBA}=90^0\)
\(\Leftrightarrow\widehat{EBA}=90^0-60^0=30^0\)(3)
Ta có: AE là tia phân giác của \(\widehat{CAB}\)(gt)
nên \(\widehat{EAB}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)(4)
Từ (3) và (4) suy ra \(\widehat{EAB}=\widehat{EBA}\)
Xét ΔEBA có \(\widehat{EAB}=\widehat{EBA}\)(cmt)
nên ΔEBA cân tại E(Định lí đảo của tam giác cân)
Xét ΔEKA vuông tại K và ΔEKB vuông tại K có
EA=EB(ΔEBA cân tại E)
EK chung
DO đó: ΔEKA=ΔEKB(cạnh huyền-cạnh góc vuông)
Suy ra: KA=KB(hai cạnh tương ứng)
c) Ta có: ΔEKB vuông tại K(gt)
nên EB là cạnh lớn nhất(EB là cạnh huyền)
hay EB>EK
mà EK=EC(cmt)
nên EB>EC(đpcm)
c)
K ẻ B N ⊥ A C N ∈ A C . B A C ⏜ = 60 0 ⇒ A B N ⏜ = 30 0 ⇒ A N = A B 2 = c 2 ⇒ B N 2 = A B 2 − A N 2 = 3 c 2 4 ⇒ B C 2 = B N 2 + C N 2 = 3 c 2 4 + b − c 2 2 = b 2 + c 2 − b c ⇒ B C = b 2 + c 2 − b c
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác ABC. Xét tam giác đều BCE có R = O E = 2 3 E M = 2 B C 3 3.2 = 1 3 . 3 b 2 + c 2 − b c