K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

\(\left(3-2x\right)^2+4x^2-9=0\)

\(\Leftrightarrow9-12x+4x^2+4x^2-9=0\)

\(\Leftrightarrow8x^2-12x=0\)

\(\Leftrightarrow4x\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

21 tháng 2 2020

\(\left(3-2x\right)^2+4x^2-9=0\)

\(\Leftrightarrow9-12x+4x^2+4x^2-9=0\)

\(\Leftrightarrow8x^2-12x=0\)

\(\Leftrightarrow4x\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

14 tháng 10 2018

a) \(x^2-4x=0\)

\(x\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

b) \(4x^2-9=0\)

\(\left(2x\right)^2-3^2=0\)

\(\left(2x+3\right)\left(2x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+3=0\\2x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}\)

c) \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\left(2x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

d) \(x\left(2x+9\right)-4x-18=0\)

\(x\left(2x+9\right)-2\left(2x+9\right)=0\)

\(\left(2x+9\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)

e) \(\left(2x-1\right)^2-\left(x+2\right)^2=0\)

\(\left(2x-1-x-2\right)\left(2x-1+x+2\right)=0\)

\(\left(x-3\right)\left(3x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}}\)

14 tháng 10 2018

\(x^2-4x=0\)

\(x.\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\Leftrightarrow x=4\end{cases}}\)

\(4x^2-9=0\)

\(2^2x^2-9=0\)

\(\left(2x\right)^2-9=0\)

\(\left(2x\right)^2-3^2=0\)

\(\Rightarrow\orbr{\begin{cases}\left(2x\right)^2=\left(-3\right)^2\\\left(2x\right)^2=3^2\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\2x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}}\)

\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\cdot\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0+3\\2x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

\(x\left(2x+9\right)-4x-18=0\)

\(x\left(2x+9\right)-\left(4x+18\right)=0\)

\(x\left(2x+9\right)-\left(2\cdot2x+2\cdot9\right)=0\)

\(x\left(2x+9\right)-2.\left(2x+9\right)=0\)

\(\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-9\\x=0+2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)

\(\left(2x-1\right)^2-\left(x+2\right)^2=0\)

\(\Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}2x-1=x+2\\2x-1=-x+2\end{cases}\Rightarrow\orbr{\begin{cases}2x=3+x\\2x=-x+3\end{cases}\Rightarrow\orbr{\begin{cases}2x-x=3\\2x+x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}}}\)

\(\)

2 tháng 2 2021

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

2 tháng 2 2021

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

1 tháng 6 2018

bn kiểm tra giúp mk đề 2 câu cuối , mk làm ko ra

23 tháng 10 2016

-_- bài này hôm qua lm rùi

6 tháng 7 2018
https://i.imgur.com/XlB7mwa.jpg
6 tháng 7 2018
https://i.imgur.com/E2sWxLH.jpg
2 tháng 7 2018

a)  \(\left(x+6\right)^2-x\left(x+9\right)=0\)

\(\Leftrightarrow\)\(x^2+12x+36-x^2-9x=0\)

\(\Leftrightarrow\)\(3x+36=0\)

\(\Leftrightarrow\)\(x=-12\)

Vậy...

b) \(6x\left(2x+5\right)-\left(3x+4\right)\left(4x-3\right)=9\)

\(\Leftrightarrow\)\(12x^2+30x-12x^2-7x+12=9\)

\(\Leftrightarrow\)\(23x+12=9\)

\(\Leftrightarrow\)\(x=-\frac{3}{23}\)

Vậy

c) \(2x\left(8x+3\right)-\left(4x+1\right)=13\)

\(\Leftrightarrow\)\(16x^2+6x-4x-1=13\)

\(\Leftrightarrow\)\(16x^2+2x-14=0\)

\(\Leftrightarrow\)\(8x^2+x-7=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(8x-7\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{8}\end{cases}}\)

Vậy

d) \(\left(x-4\right)^2-x\left(x+4\right)=0\)

\(\Leftrightarrow\)\(x^2-8x+16-x^2-4x=0\)

\(\Leftrightarrow\)\(-12x+16=0\)

\(\Leftrightarrow\)\(x=\frac{4}{3}\)

Vậy

e) \(\left(x-2\right)^2-\left(2x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x^2-4x+4-2x^2+x+6=0\)

\(\Leftrightarrow\)\(-x^2-3x+10=0\)

\(\Leftrightarrow\)\(\left(2-x\right)\left(x+5\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

Vậy

29 tháng 9 2018

\(2x^3-50x=0\)

<=>  \(2x\left(x^2-25\right)=0\)

<=>   \(2x\left(x-5\right)\left(x+5\right)=0\)

đến đây

bạn tự giải nhé

hk tốt   

23 tháng 10 2021

e: ta có: \(4x^2+4x-6=2\)

\(\Leftrightarrow4x^2+4x-8=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

f: Ta có: \(2x^2+7x+3=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

30 tháng 12 2016

b)   ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0

<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0

<=> ( 2x - 3 )( 1 + x - 1 ) = 0

<=> x( 2x - 3 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)

Vậy .....

30 tháng 12 2016

a, 25x^2 - 1 - (5x -1)(x+2)=0

=> (5x)^2 - 1 + (5x-1)(x+2) = 0

=> (5x-1)(5x+1) + (5x-1)(x+2) = 0

=> (5x-1)(5x+1+x+2) = 0

=> (5x-1)(6x+3) = 0

=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)

1 tháng 6 2018

Tìm x:

1. \(25x^2-20x+4=0\)

\(\left(5x-2\right)^2=0\)

\(5x-2=0\)

\(5x=2\)

\(x=\dfrac{2}{5}\)

⇒ S = \(\left\{\dfrac{2}{5}\right\}\)

2. \(\left(2x-3\right)^2-\left(2x+1\right).\left(2x-1\right)=0\)

\(4x^2-12x+9-\left(4x^2-1\right)=0\)

\(4x^2-12x+9-4x^2+1=0\)

\(-12x+10=0\)

\(-12x=-10\)

\(x=\dfrac{5}{6}\)

⇒ S \(=\left\{\dfrac{5}{6}\right\}\)

3. \(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)-\left(\dfrac{1}{2}x-1\right)^2=0\)

\(\dfrac{1}{4}x^2-1-\left(\dfrac{1}{4}x^2-x+1\right)=0\)

\(\dfrac{1}{4}x^2-1-\dfrac{1}{4}x^2+x-1=0\)

\(-2+x=0\)

\(x=2\)

⇒ S \(=\left\{2\right\}\)

4. \(\left(2x-3\right)^2+\left(2x+5\right)^2=8\left(x+1\right)^2\)

\(4x^2-12x+9+4x^2+20x+25=8\left(x^2+2x+1\right)\)

\(8x^2+8x+34=8x^2+16x+8\)

\(8x+34=16x+8\)

\(8x-16x=8-34\)

\(-8x=-26\)

\(x=\dfrac{13}{4}\)

⇒ S \(=\left\{\dfrac{13}{4}\right\}\)

5.\(4x^2+12x-7=0\)

\(4x^2+14x-2x-7=0\)

\(2x\left(2x+7\right)-\left(2x+7\right)=0\)

\(\left(2x+7\right)\left(2x-1\right)=0\)

\(\left[{}\begin{matrix}2x+7=0\\2x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-7}{2};\dfrac{1}{2}\right\}\)

6. \(\dfrac{1}{4}x^2+\dfrac{2}{3}x-\dfrac{5}{9}=0\)

\(9x^2+24x-20=0\)

\(9x^2+30x-6x-20=0\)

\(3x\left(3x+10\right)-2\left(3x+10\right)=0\)

\(\left(3x+10\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}3x+10=0\\3x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-10}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-10}{3};\dfrac{2}{3}\right\}\)

1 tháng 6 2018

7. \(24\dfrac{8}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(\dfrac{224}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(896-9x^2-12x=0\)

\(-896+9x^2+12x=0\)

\(9x^2+12x-896=0\)

\(9x^2-84x+96x-896=0\)

\(3x\left(3x-28\right)+32\left(3x-28\right)=0\)

\(\left(3x-28\right)\left(3x+32\right)=0\)

\(\left[{}\begin{matrix}3x-28=0\\3x+32=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=\dfrac{-32}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-32}{3};\dfrac{28}{3}\right\}\)