Cho tam giác ABC có AB = 6cm, AC = 10cm. Một đường thẳng d song song với BC, d cắt các canh AB, AC lần lượt tại D và E. Hãy xác định vị trí của điểm D trên AB sao cho AD = CE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABC có DE//BC
nên AE/AC=AD/AB
=>AE/8=1/3
=>AE=8/3(cm)
2:
Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/10=1/3
=>DE=10/3(cm)
Xét tứ giác BDEF có
BD//EF
BF//DE
Do đó: BDEF là hình bình hành
=>BF=DE=10/3(cm)
3:
AD/AB=1/3
AE/AC=1/3
DE/BC=1/3
Do đó: AD/AB=AE/AC=DE/BC
Theo Talet có : DE //AC => \(\frac{CD}{CB}=\frac{AE}{AB}\)
: DF // AB => \(\frac{BD}{BC}=\frac{AF}{AC}\)
Giả sử EF // BC => \(\frac{AE}{AB}=\frac{AF}{AC}\Rightarrow\frac{CD}{CB}=\frac{BD}{BC}\)
=> CD = BD
=> D là trung điểm của BC
a/Áp dụng định lí Pytago và tam giác ABC vuông tại A:
BC2=AB2+AC2
=>AC2=BC2-AB2=102-62=100-36=64
=> AC=\(\sqrt{64}=8cm\)
b/ Xét tam giác ABC và tam giác ADC có:
AC chung
góc BAC=DAC=90 độ
AD=AB(gt)
=> Tam giác ABC=tam giác ADC(c-g-c)
Qua D kẻ đường thẳng song song với AC
Xét tam giác BHD và EFC có: \(\widehat{DBH}=\widehat{CEF}\)( AB//EF, đồng vị)
BD=EC (gt)
\(\widehat{HDB}=\widehat{FCE}\)(HD//AC, đồng vị)
=> \(\Delta BHD=\Delta EFC\)=> EF=BH
Tương tự dựa vào song song và sole trong em tự chứng minh tam giác AHD= tam giác DGA
=> DG=AH
Vậy nên AB= AH+BH=EF+DG
Trà Vy 7B,lời giải đây nhé,ko có gì 2 lên lớp chỉ tiếp
Do \(HD\backslash\backslash AC\)
\(\Rightarrow\widehat{ADH}=\widehat{DAG}\left(1\right)\)(So le trong)
\(\Rightarrow\widehat{HAD}=\widehat{GDA}\)\(\left(2\right)\)(So le trong)
Từ (1),(2) và AD chung
\(\Rightarrow\Delta ADH=\Delta DAG\left(G.C.G\right)\)
P/S:cô thông cảm hộ em,bạn ấy(Vương Tuấn Khải) bắt em hoàn thiện bài của cô ý ah
Xét \(\Delta\)ABC có DE //BC
=> \(\frac{AD}{AB}=\frac{AE}{AC}\)( ta lét)
=> \(\frac{AC}{AB}=\frac{AE}{AD}=\frac{AC-EC}{AD}=\frac{AC-AD}{AD}\)( vì AD = CE)
=> \(\frac{AC}{AB}=\frac{AC}{AD}-1\)
Khi đó: \(\frac{10}{6}=\frac{10}{AD}-1\)
<=> \(\frac{10}{AD}=\frac{16}{6}\)
<=> AD= 10.6 : 16 = 3,75