K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Xét \(\Delta\) ABE vuông tại E, áp dụng định lí Py-ta-go

\(\Rightarrow\)AB2=AE2+EB2

\(\Rightarrow\)AE2=AB2-EB2

Xét ACE vuông tại E, áp dụng định lí Py-ta-go

\(\Rightarrow\)AC2=AE2+CE2

Thay AE2=AB2-EB2 vào công thức

\(\Rightarrow\)AC2=AB2-EB2+CE2

\(\Rightarrow\)AC2-AB2=CE2-EB2     (1)

Xét \(\Delta\) KBE vuông tại E, áp dụng định lí Py-ta-go

\(\Rightarrow\)KB2=KE2+EB2

\(\Rightarrow\)KE2=KB2-EB2

Xét KCE vuông tại E, áp dụng định lí Py-ta-go

\(\Rightarrow\)KC2=KE2+CE2

Thay KE2=KB2-EB2 vào công thức

\(\Rightarrow\)KC2=KB2-EB2+CE2

\(\Rightarrow\)KC2-KB2=CE2-EB2     (2)

Từ (1) và (2) \(\Rightarrow\) AC2-AB2=KC2-KB2 (=CE2-EB2)

CHÚC BẠN HỌC TỐT ! 

19 tháng 2 2020

HHình vẽ đâu???

20 tháng 6 2021

Ta có: \(AD=\sqrt{AB^2-BD^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)

\(CD=\sqrt{BC^2-BD^2}=\sqrt{17^2-8^2}=15\left(cm\right)\)

\(\Rightarrow AC=CD+AD=6+15=21\left(cm\right)\)

14 tháng 11 2017

11 tháng 9 2020

                                                   Xét tam giác ABH có:

                                                         AB^2 = BC.BH

                                                   hay 6^2 10.BH

                                                   suy ra: BH=3,6 (cm)

                                Tương tự: xét tam giác AHC có:

                                                         AC^2 = BC.HC

                                                  hay 8^2 = 10.HC

                                                  suy ra: HC=6,4 (cm)

                                               Trong tam giác AHC có:

                                                   AC^2 = AH^2 + HC^2

                                           hay 10^2 = AH^2 + 6,4^2

                                           suy ra: AH= 7,7 (cm)

                              MÌNH BIẾT ĐƯƠC CÓ NHIÊU ĐÂY À, CHỪNG NÀO NGHĨ RA THÌ MÌNH LÀM THÊM NHA..!!!

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Ta có:

\(\frac{{AE}}{{AC}} = \frac{{10}}{{15}} = \frac{2}{3};\frac{{AF}}{{AB}} = \frac{8}{{12}} = \frac{2}{3}\)

Xét tam giác \(AFE\) và tam giác \(ABC\) ta có:

\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}} = \frac{2}{3}\)

\(\widehat A\) chung

Do đó, \(\Delta AFE\backsim\Delta ABC\) (c.g.c)

Do đó, \(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}} = \frac{{EF}}{{BC}} = \frac{2}{3}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Do đó, \(\frac{{EF}}{{BC}} = \frac{2}{3} \Rightarrow EF = \frac{{BC.2}}{3} = \frac{{18.2}}{3} = 12\)

Vậy \(BC = 12cm\).

b) Vì \(FC = FD\) nên tam giác \(FDC\) cân tại \(F\).

Suy ra, \(\widehat {FDC} = \widehat {FCD}\) (tính chất)

Ta có:

\(\frac{{AC}}{{MD}} = \frac{{15}}{{20}} = \frac{3}{4};\frac{{BC}}{{DE}} = \frac{9}{{12}} = \frac{3}{4}\)

Xét tam giác \(ABC\) và tam giác \(MED\) ta có:

\(\frac{{AC}}{{MD}} = \frac{{BC}}{{DE}} = \frac{3}{4}\)

\(\widehat {FCD} = \widehat {FDC}\) (chứng minh trên)

Do đó, \(\Delta ABC\backsim\Delta MED\) (c.g.c).

Bài 1: Cho tam giác ABC có AB =12cm, AC = 24cm, Trên cạnh AB, AC lần lượt lấy các điểm D, E sao cho AD =8cm, AE = 4cm. Biết DE = 10cm, tính độ dài cạnh BC.Bài 2: Cho tam giác ABC. Điểm D thuộc cạnh AC sao cho AB2 = AD.AC. Tính AD, AC nếu biết AB = 10cm và tỉ số khoảng cách từ A đến BD, BC là 1:2.Bài 3: Cho hình thang ABCD(AB//CD), 𝐴̂ = 𝐷̂ = 900 ; AB =2; CD = 4,5, BD = 3. Chứng minh rằng BC vuông góc với BD.Bài 4: Cho hình...
Đọc tiếp

Bài 1: Cho tam giác ABC có AB =12cm, AC = 24cm, Trên cạnh AB, AC lần lượt lấy các điểm D, E sao cho AD =8cm, AE = 4cm. Biết DE = 10cm, tính độ dài cạnh BC.

Bài 2: Cho tam giác ABC. Điểm D thuộc cạnh AC sao cho AB2 = AD.AC. Tính AD, AC nếu biết AB = 10cm và tỉ số khoảng cách từ A đến BD, BC là 1:2.

Bài 3: Cho hình thang ABCD(AB//CD), 𝐴̂ = 𝐷̂ = 900 ; AB =2; CD = 4,5, BD = 3. Chứng minh rằng BC vuông góc với BD.

Bài 4: Cho hình bình hành ABCD. Vẽ AH vuông góc với CD tại H, AK vuông góc với BC tại K. Chứng minh rằng tam giác KAH đồng dạng với tam giác ABC

. Bài 5: Cho hình vuông ABCD. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại M, tia DE cắt đường thẳng AB tại N. Chứng minh rằng

a) Tam giác NBC đồng dạng với tam giác BCM                                  b) BM vuông góc với CN.

Bài 6: Cho tam giác ABC có AB = 2,5cm, AC = 2cm, BC =3cm. Chứng minh rằng 𝐴̂ =2𝐵̂

. Bài 7: Cho tam giác ABC và G là điểm thuộc miền trong tam giác. Tia AG cắt BC tại K và tia CG cắt AB tại M. Biết AG =2GK và CG = 2GM. Chứng minh rằng G là trọng tâm của tam giác ABC.

Bài 8: Cho tam giác ABC cân tại A và M là trung điểm của cạnh đáy BC.Một điểm D thay đổi trên cạnh AB. Lấy một điểm E trên cạnh AC sao cho CE .BD = MB2 . Chứng minh rằng:

a) Tam giác DBM và MCE đồng dạng

b) Tam giác DME cùng đồng dạng với hai tam giác trên.

c) Dm là phân giác của góc BDE, EM là phân giác của góc CED.

d) Khoảng cách từ M đến ED không đổi khi D thay đổi trên AB.

 

0