Cho x,y,z là các số thực dương thỏa mãn \(x\left(3-xy-xz\right)+y+6z\le5xz\left(y+z\right)\) . Tìm giá trị nhỏ nhất của biểu thức
P = 6x + 2y + 12z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x+y+6z\le5xyz+5xz^2+x^2y+x^2z=x\left(y+z\right)\left(5z+x\right)\)
\(\Rightarrow3x+y+6z\le\frac{1}{2}.2x\left(y+z\right)\left(5z+x\right)\le\frac{1}{54}\left(3x+y+6z\right)^3\)
\(\Rightarrow\left(3x+y+6z\right)^2\ge54\)
\(\Rightarrow3x+y+6z\ge3\sqrt{6}\)
\(\Rightarrow P\ge6\sqrt{6}\)
Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:
Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24
mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không