K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

Xét \(\Delta ABC\)có: 

\(AB^2=13^2=169cm\)

\(BC^2+AC^2=12^2+5^2=169\)

\(\Rightarrow AB^2=BC^2+AC^2=169cm\)

\(\Rightarrow\Delta ABC\)vuông (Pitago đảo)

14 tháng 7 2021

tam giác ABC vuông tại A nên áp dụng định lý Py-ta-go

\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=13^2-12^2=25\)

\(\Rightarrow AC=5\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow12^2=BH.13\Rightarrow BH=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow5^2=BH.13\Rightarrow BH=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\)

14 tháng 7 2021

Ta có: \(AC=\sqrt{BC^2-AC^2}=\sqrt{13^2-12^2}=5\left(cm\right)\)

Ta có: \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)

Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\)

25 tháng 2 2017

ta có AB2+AC2=122+52=144+25=169

         BC2=132=169

==> AB2+AC2=BC2

==> Tam giác ABC vuông

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

a: Xét ΔANH vuông tại N và ΔAHC vuông tại H có

góc NAH chung

Do đó: ΔANH\(\sim\)ΔAHC

b: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

12 tháng 5 2022

refer

a: Xét ΔAEM vuông tại M và ΔAHM vuông tại M có

AM chung

ME=MH

Do đó: ΔAEM=ΔAHM

b: Xét ΔBHE có 

BM là đường cao

BM là đường trung tuyến

Do đó: ΔBHE cân tại B

Xét ΔAEB và ΔAHB có 

AE=AH

EB=HB

AB chung

Do đó: ΔAEB=ΔAHB

Suy ra: ˆAEB=ˆAHB=900AEB^=AHB^=900

hay AE⊥EB

6 tháng 4 2022

a, Xét \(\Delta CHA.và.\Delta CAB\), ta có:

\(\widehat{CHA}=\widehat{CAB}=90^o\)

\(\widehat{C.}chung\)

\(\Rightarrow\Delta CHA\sim\Delta CAB\) ( g.g )

b, \(Vì.\Delta CHA\sim\Delta CAB\)

\(\Rightarrow\dfrac{CH}{CA}=\dfrac{CA}{CB}\\ \Rightarrow AC^2=CB.CH\left(đpcm\right)\)

c. Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

\(AB^2+AC^2=BC^2\\ \Rightarrow BC^2=9^2+12^2=225\\ \Rightarrow BC=\sqrt{225}=15\left(cm\right)\)

\(Vì.\Delta CHA\sim\Delta CAB\)

 \(\Rightarrow\dfrac{HA}{AB}=\dfrac{CA}{CB}\)

\(\Rightarrow AH=\dfrac{CA.AB}{CB}=\dfrac{12.9}{15}=7,2\left(cm\right)\)

5 tháng 5 2022

ko biết