tính các giới hạn sau: ( mình đang tự học bài này nên cần mọi người trình bày chi tiết hộ mình nhé)
a;\(\lim\limits_{x\rightarrow\left(-3\right)^+}\frac{3x+9}{\left|3+x\right|}\) \(\lim\limits_{x\rightarrow\left(-3\right)^+}\frac{3x+9}{\left|3+x\right|}\)
b; \(\lim\limits_{x\rightarrow0^+}\frac{\sqrt{x}-3x}{4x-2\sqrt{x}}\)
c; \(\lim\limits_{x\rightarrow1^-}\frac{\sqrt{1-x}}{-x^2-3x+4}\)
d; \(\lim\limits_{x\rightarrow\sqrt{2}^-}\frac{\left|x-2\right|}{x^4-4}\)
a/ Do \(x\rightarrow-3^+\) nên \(x>-3\Rightarrow x+3>0\Rightarrow\left|x+3\right|=x+3\)
\(\Rightarrow\lim\limits_{x\rightarrow-3^+}\frac{3x+9}{\left|x+3\right|}=\lim\limits_{x\rightarrow-3^+}\frac{3\left(x+3\right)}{x+3}=3\)
b/ \(=\lim\limits_{x\rightarrow0^+}\frac{\sqrt{x}\left(1-3\sqrt{x}\right)}{\sqrt{x}\left(4\sqrt{x}-2\right)}=\lim\limits_{x\rightarrow0^+}\frac{1-3\sqrt{x}}{4\sqrt{x}-2}=-\frac{1}{2}\)
Ở câu này \(x\rightarrow0^+\) có nghĩa \(x>0\), nó chỉ để căn thức xác định, ngoài ra ko có gì đặc biệt hết
c/ Tương tự câu c, cũng chỉ để căn thức xác định \(\left(x< 1\right)\)
\(\lim\limits_{x\rightarrow1^-}\frac{\sqrt{1-x}}{\left(1-x\right)\left(x+4\right)}=\lim\limits_{x\rightarrow1^-}\frac{1}{\sqrt{1-x}\left(x+4\right)}=+\infty\)
d/ Chắc bạn ghi nhầm đề, đây ko phải giới hạn dạng vô định (vì tử khác 0, mẫu bằng 0):
\(x\rightarrow\sqrt{2}^-\Rightarrow x< \sqrt{2}\Rightarrow x^4-4< 0\)
\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}^-}\frac{\left|x-2\right|}{x^4-4}=-\infty\)