Cho số thực x thỏa \(-5\le x\le7\). Tìm giá trị lớn nhất nhỏ nhất của biểu thức P = (x + 5)(7 - x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-3\right)\left(7-x\right)=-x^2+10x-21=-\left(x^2-10x+25\right)+4\)
\(A=-\left(x-5\right)^2+4\le4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-5\right)^2=0\)\(\Leftrightarrow\)\(x=5\)( thỏa mãn \(3\le x\le7\) )
...
Còn cách này hay hơn nhé :)) dùng Cosi
Vì \(3\le x\le7\) nên \(A=\left(x-3\right)\left(7-x\right)\ge0\)
\(\Rightarrow\)\(\sqrt{A}=\sqrt{\left(x-3\right)\left(7-x\right)}\le\frac{x-3+7-x}{2}=\frac{4}{2}=2\)\(\Leftrightarrow\)\(A=2^2=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x-3=7-x\)\(\Leftrightarrow\)\(x=5\) ( thỏa mãn \(3\le x\le7\) )
Đề bài sai/thiếu, biểu thức này không thể tồn tại max nếu x; y chỉ là số thực (lấy ví dụ, \(x=y=-1000\), như vậy \(2x+3y< 0\le7\) phù hợp điều kiện, nhưng P lại ra 1 kết quả khổng lồ)
P chỉ tồn tại max khi x; y có thêm điều kiện (ví dụ x; y dương hoặc không âm)
Khi đó: \(2x+3y\le7\Rightarrow3y\le7-2x\Rightarrow y\le\dfrac{7}{3}-\dfrac{2}{3}x\)
Từ đó ta có:
\(P=x+y\left(x+1\right)\le x+\left(\dfrac{7}{3}-\dfrac{2}{3}x\right)\left(x+1\right)\)
\(\Rightarrow P\le-\dfrac{2}{3}x^2+\dfrac{8}{3}x+\dfrac{7}{3}=-\dfrac{2}{3}\left(x-2\right)^2+5\le5\)
\(P_{max}=5\) khi \(\left(x;y\right)=\left(2;1\right)\)
\(T=\frac{3+x}{x}+\frac{6-x}{3-x}=\frac{\left(3+x\right)\left(3-x\right)+x\left(6-x\right)}{x\left(3-x\right)}=\frac{9-x^2+6x-x^2}{x\left(3-x\right)}=\frac{9+6x-2x^2}{x\left(3-x\right)}\)
Đặt T = a
<=> \(\frac{9+6x-2x^2}{x\left(3-x\right)}=a\)
<=> \(9+6x-2x^2=3xa-x^2a\)
<=> \(2x^2-6x-9=x^2a-3xa\)
<=> \(x^2\left(2-a\right)-x\left(6-3a\right)-9=0\)
Phương trình trên có nghiệm
<=> \(\Delta=\left(6-3a\right)^2+4.9.\left(2-a\right)\ge0\)
<=> \(36-36a+9a^2+72-36a\ge0\)
<=> \(9a^2-72a+108\ge0\)
<=> \(\left(a-6\right)\left(a-2\right)\ge0\)
<=> \(\hept{\begin{cases}a\ge6\\a\le2\end{cases}}\)
Vậy \(Min_T=6\) <=> \(x=\frac{3}{2}\)
và \(Max_T=2\Leftrightarrow x\in\varnothing\) (Không tồn tại giá trị lớn nhất của x )
\(P=\frac{1}{5xy}+\frac{5}{x+2y+5}=\frac{1}{5xy}+\frac{5}{\left(x+y\right)+y+5}\ge\frac{1}{5xy}+\)\(\frac{5}{y+8}\)
\(\Leftrightarrow P\ge\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{y+8}+\frac{y+8}{20}-\frac{xy+y+8}{20}\)
Lại có \(\frac{xy+y+8}{20}=\frac{y\left(x+1\right)+8}{20}\le\frac{\frac{\left(x+y+1\right)^2}{4}}{20}\le\frac{3}{5}\)
khi đó \(p\ge\left(\frac{1}{5xy}+\frac{xy}{20}\right)+\left(\frac{5}{y+8}+\frac{y+8}{20}\right)-\frac{xy+y+8}{20}\)
\(\Leftrightarrow P\ge\frac{1}{5}+1-\frac{3}{5}\)
\(\Leftrightarrow P\ge\frac{3}{5}\)
vậy \(P_{min}=\frac{3}{5}\Rightarrow x=1,y=2\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
$x^5+x^5+x^5+1+1\geq 5\sqrt[5]{x^{15}}=5x^3$
$y^5+y^5+y^5+1+1\geq 5\sqrt[5]{y^{15}}=5y^3$
$\Rightarrow 3(x^5+y^5)+4\geq 5(x^3+y^3)\geq 10$ (do $x^3+y^3\geq 2$)
$\Leftrightarrow x^5+y^5\geq 2$
Vậy $C_{\min}=2$. Giá trị này đạt tại $x=y=1$
b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=2
gt => \(\left\{{}\begin{matrix}x+5\ge0\\7-x\ge0\end{matrix}\right.\)
Khi đó \(P\ge0\) khi x=-5 hoặc x=7
\(P\le\frac{\left(x+5+7-x\right)^2}{4}=36\)
Dấu bằng xảy ra khi x+5=7-x <=> x=1
Vậy min P=0 khi x=-5 hoặc x=7
max P =36 khi x=1