2x2-2x=(x-1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) `(x^3-x^2)/(x^3-2x^2+x)`
`=(x^2(x-1))/(x(x-1)(x-1))`
`=x/(x-1)`
`=>` 2 phân thức bằng nhau.
b) `(x^2+2x+1)/(2x^2-2)`
`=((x+1)(x+1))/(2(x+1)(x-1))`
`=(x+1)/(2(x-1))`
`=(x+1)/(2x-2)`
`=>` 2 phân thức bằng nhau
a) Ta có: \(\dfrac{x^3-x^2}{x^3-2x^2+x}\)
\(=\dfrac{x^2\left(x-1\right)}{x\left(x^2-2x+1\right)}\)
\(=\dfrac{x\cdot\left(x-1\right)}{\left(x-1\right)^2}=\dfrac{x}{x-1}\)
b) Ta có: \(\dfrac{x^2+2x+1}{2x^2-2}\)
\(=\dfrac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x+1}{2x-2}\)
a) Ta có: \(x^2\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
b) Ta có: \(x^2-x=-2x^2+2x\)
\(\Leftrightarrow3x^2-3x=0\)
\(\Leftrightarrow3x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
c) Ta có: \(2x^2\left(x-1\right)+x^2=x\)
\(\Leftrightarrow2x^2\left(x-1\right)+x^2-x=0\)
\(\Leftrightarrow2x^2\left(x-1\right)+x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\cdot\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{-1}{2}\end{matrix}\right.\)
d) Ta có: \(\left(x-2\right)\left(x^2+4\right)=x^2-2x\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4\right)-x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-x+4\right)=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
\(a\\ -5x^2+3x.\left(x+2\right)=-5x^2+3x^2+6x=-2x^2+6x\\ b\\ -2x.\left(1-x^2\right)-2x^3=-2x+2x^3-2x^3=-2x\\ c\\ 4x.\left(x-1\right)-4.\left(x^2+2x-1\right)\\ =4x^2-4x-4x^2-8x+4=-12x+4\)
\(d\\ 6x^3-2x^2.\left(-x^2-3x\right)=6x^3+2x^4+6x^3=2x^4+12x^3\\ e\\ 3x.\left(x-1\right)-\left(1+2x\right).5x\\ =3x^2-3x-5x-10x^2=-7x^2-8x\\ f\\ -5x^2-\left(x-6\right).\left(-2x^2\right)=-5x^2+2x^3-12x^2=2x^3-17x^2\)
a) Ta có: \(\left(x^2-2x\right)^2-6x^2+12x+9=0\)
\(\Leftrightarrow\left(x^2-2x\right)^2-6\left(x^2-2x\right)+9=0\)
\(\Leftrightarrow\left(x^2-2x-3\right)^2=0\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: S={3;-1}
b) Ta có: \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+5\left(x^2+x\right)-2\left(x^2+x\right)-10=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+5\right)-2\left(x^2+x+5\right)=0\)
\(\Leftrightarrow\left(x^2+x+5\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow x^2+x-2=0\)(Vì \(x^2+x+5>0\forall x\))
\(\Leftrightarrow x^2+2x-x-2=0\)
\(\Leftrightarrow x\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy: S={-2;1}
2 ý a và b anh CTV nãy đã làm rồi nha, còn câu c này thì làm dài dòng+không chắc :VVV
c)\(\left(2x^2-3x+1\right)\left(2x^2+5x+1\right)-9x^2=0\)
\(\Leftrightarrow\left(2x^2-3x+1\right)\left(2x^2-3x+1+8x\right)-9x^2=0\)
\(\Leftrightarrow\left(2x^2-3x+1\right)^2+8x\left(2x^2-3x+1\right)+16x^2-25x^2=0\)
\(\Leftrightarrow\left(2x^2-3x+1+4x\right)^2-25x^2=0\)
\(\Leftrightarrow\left(2x^2+x+1\right)^2-25x^2=0\)
\(\Leftrightarrow\left(2x^2+x+1-5x\right)\left(2x^2+x+1+5x\right)=0\)
\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x^2-4x+1\right)=0\\\left(2x^2+6x+1\right)=0\end{matrix}\right.\)
Rồi đến đây tự giải nhé, không phân tích được thì bấm máy tính là ra nha:vv
\(a,=x^2-6x+9-x^2+6x=9\\ b,=4x^2+4x+1-4x^2+9-4x-8=2\\ c,=\left(2x^2-2x-x+1\right):\left(x-1\right)\\ =\left(x-1\right)\left(2x-1\right):\left(x-1\right)=2x-1\)
`a)(x-3)^2-x(x-6)`
`=x^2-6x+9-x^2+6x=9`
`b)(2x+1)^2-(3+2x)(2x-3)-4(x+2)`
`=4x^2+4x+1-(4x^2-9)-4x-8`
`=2`
`c)(2x^2-3x+1):(x-1)`
`=(2x^2-2x-x+1):(x-1)`
`=[2x(x-1)-(x-1)]:(x-1)`
`=2x-1`
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)
= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)
= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x
= (– 3x3 + 3x3 ) + (2x2 - 6x2 + 4x2 ) + (6x – 6x)
= 0 + 0 + 0
= 0
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]
= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5
= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5
= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5
= 0 + 0 – 5
= - 5
\(2x^2-2x=\left(x-1\right)^2\Leftrightarrow2x^2-2x=x^2-2x+1\)
\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)