K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

2P=2/1.2.3+2/2.3.4+2/3.4.5+2/10.11.12
2P=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+.....+1/10.11-1/11.12
2P=1/1.2-1/11.12
2P=1/2-1/132
2P=66/132-1/132
2P=65/132
 P=65/264

\(P=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)

\(P=\dfrac{1}{2}-\dfrac{1}{11.12}\)

\(P=\dfrac{65}{132}\)

 

30 tháng 3 2016

\(M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{10.11}-\frac{1}{11.12}\)

\(M=\frac{1}{2}-\frac{1}{11.12}=\frac{65}{132}\)

26 tháng 9 2021

Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

Áp dụng:

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\\ =\dfrac{1}{2}-\dfrac{1}{11\cdot12}=\dfrac{1}{2}-\dfrac{1}{132}=\dfrac{65}{132}\)

26 tháng 9 2021

sai rồi kìa

\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{2}{1.2.3}\) mà

26 tháng 4 2016

\(2M=2\cdot\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+.....+\frac{1}{10\cdot11\cdot12}\right)\)

\(2M=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+.....+\frac{2}{10\cdot11\cdot12}\)

\(2M=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+.....+\frac{1}{10\cdot11}-\frac{1}{11\cdot12}\)

\(2M=\frac{1}{1\cdot2}-\frac{1}{11\cdot12}\)

\(2M=\frac{1}{2}-\frac{1}{132}\)

\(2M=\frac{66}{132}-\frac{1}{132}\)

\(2M=\frac{65}{132}\)

\(M=\frac{65}{132}:2\)

\(M=\frac{65}{264}\)

26 tháng 9 2021

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)

5 tháng 4 2018

Ta có : 

\(M=\frac{5}{1.2.3}+\frac{5}{2.3.4}+...+\frac{5}{10.11.12}\)

\(M=5.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{10.11.12}\right)\)

\(M=5.\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\right)\)

\(M=\frac{5}{2}.\left(\frac{1}{1.2}-\frac{1}{11.12}\right)\)

\(M=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{132}\right)\)

\(M=\frac{5}{2}.\left(\frac{66}{132}-\frac{1}{132}\right)\)

\(M=\frac{5}{2}.\frac{65}{132}\)

\(M=\frac{325}{264}\)

Tham khảo nha !!! Chúc học tốt !!!

5 tháng 4 2018

Công thức : 

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\frac{1}{3}=\frac{1}{1.2.3}\)

17 tháng 4 2017

Nhận xét rằng:
2/[(n - 1)n(n +1)] = 1/[(n-1).n] - 1/[n(n+1)]
Do đó
2M = 2/(1.2.3) + 2/(2.3.4) + 2/(3.4.5) + ... + 2(10.11.12)
= 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + 1/(3.4) - 1/(4.5) + .... + 1/(10.11) - 1/(11.12)
= 1/(1.2) - 1/(11.12) = 65/132
=> M = 65/264

17 tháng 4 2017

Ta có nhận xét: \(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{3-1}{1.2.3}=\dfrac{2}{1.2.3}\),

\(\dfrac{1}{2.3}-\dfrac{1}{3.4}=\dfrac{4-2}{2.3.4}=\dfrac{2}{2.3.4};...\)

\(\Rightarrow\dfrac{1}{1.2.3}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)\);

\(\dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\);...

Do đó \(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{1.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)

\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{10.11.12}\)

\(M=\frac{1}{2}-\frac{1}{11.12}\)

\(M=\frac{65}{132}\)

Ngắn gọn , xúc tích !!! :))

 
28 tháng 7 2017

\(M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\right)\)

\(M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{11.12}\right)\)

\(M=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{132}\right)\)