CMR: Tổng của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số tự nhiên liên tiếp đó là a-1;a;a+1;a+2
Theo đề ra ta có
\(a\left(a-1\right)\left(a+1\right)\left(a+2\right)+1=\left[a\left(a+1\right)\right]\left[\left(a-1\right)\left(a+2\right)\right]+1\)
\(=\left(a^2+a\right)\left(a^2+a-2\right)+1\)
Đặt \(a^2+a-1=x\)
=>\(\left(x-1\right)\left(x+1\right)+1=x^2-1+1=x^2\)là số chính phương
Vậy ...
a+(a+1(+(a+2(+(a+3) +1 = 4a+7
với a =5 => 4.5 + 7 =27 không là số chính phương
=> đề sai
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có
n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1
= (n2 + 3n)( n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.
Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có
n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1
= (n2 + 3n)( n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.
Gọi 4 số tự nhiên liên tiếp là n-1;n;n+1;n+2(n thuộc N*)
Theo đề ra ta có
\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)+1=\left(n\left(n+1\right)\right).\left(\left(n-1\right)\left(n+2\right)\right)+1\)
\(=\left(n^2+n\right)\left(n^2+n-2\right)+1\)
Đặt \(n^2+n-1=a\)
=>(a-1)(a+1)+1=a^2-1+1=a^2 là số chính phương
Tick nha
Gọi 4 số tự nhiên liên tiếp là n , n + 1 , n + 2 , n + 3 , n + 4 ( \(n\inℕ\))
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)
Giả sử A là một số chính phương .
Vì A là đa thức bậc 4 với hệ số bậc cao nhất là 1 nên ta có :
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)=\left(n^2+an+b\right)^2\)
\(\Rightarrow n^4+6n^3+11n^2+6n+1=n^4+2an^3+\left(a^2+2b\right)n^2+2abn+b^2\)
Đồng nhất 2 vế ta được :
\(\hept{\begin{cases}2a=6;a^2+2b=11\\2ab=6;b^2=1\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\b=1\end{cases}}\)
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)=\left(n^2+3n+1\right)^2\forall n\). Ta có điều phải chứng minh.
QTV sai r nhé :))
Gọi 4 stn lt là \(a,a+1,a+2,a+3\left(a\inℕ\right)\)
Xét \(A=a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(=a\left(a+3\right)\left(a+1\right)\left(a+2\right)+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
\(=\left(a^2+3a+1\right)^2-1+1=\left(a^2+3a+1\right)^2\)(ĐPCM)
Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có
n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1
= (n2 + 3n)( n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.:))
Goi 4 số tự nhiên liên tiếp lần lượt là x, x+1, x+2, x+3 (\(x\in N\))
Ta sẽ chứng minh \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)là một số chính phương.
Ta có : \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)\left[\left(x^2+3x\right)+2\right]+1\)
\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)là một số chính phương.
Vậy ta có điều phải chứng minh.
A=n +(n+1)+(n+2)+(n+3)+1 =4n +7
với n =2 => A =15 là số chính phương đâu
Bạn nhầm tổng với tích thì phải
google nhé bạn,có đấy
tick nha