(x-2014)^3+(x+2012)^3=8(x-1)^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x-2014+x+2012\right)^3-3\cdot\left(x-2014\right)\left(x+2012\right)\left(x-2014+x+2012\right)=\left(2x-2\right)^3\)
=>3(x-2014)(x+2012)(2x-2)=0
=>\(x\in\left\{2014;-2012;1\right\}\)
Theo đề bài ta suy ra:
\(\left(x-2014\right)^3+\left(x+2012\right)^3=\left[2\left(x-1\right)\right]^3\Rightarrow\left(x-2014\right)^3+\left(x+2012\right)^3=\left(2x-2\right)^3\)(1)
Đặt \(\hept{\begin{cases}x-2014=a\\x+2012=b\end{cases}\Rightarrow}2x-2=a+b\)
Khi đó từ (1), ta có:
\(a^3+b^3=\left(a+b\right)^3\Rightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\Rightarrow3ab\left(a+b\right)=0\)
\(\Rightarrow3\left(x-2014\right)\left(x+2012\right)\left(2x-2\right)=0\)
Từ đó tìm được \(x\in\left\{2014;-2012;1\right\}\)
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
(2015x - 2014)3 = 8(x - 1)3 + (2013x - 2012)3
<=> 6(x - 1)(2013x - 2012)(2015x - 2014) = 0
Tới đây thì xong rồi
PT <=> (2015x - 2014)3 = (2x - 2)3 + (2013x - 2012)3
<=> (2015x - 2014)3 = (2x - 2 + 2013x - 2012). [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2]
<=> (2015x - 2014)3 = (2015x - 2014). [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2]
<=> (2015x - 2014).[ (2015x - 2014)2 - [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2]] = 0
<=> 2015.x - 2014 = 0 hoặc (2015x - 2014)2 - [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2] = 0
+) 2015x - 2014 = 0 => x = 2014/2015
+) (2015x - 2014)2 - [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2] = 0
<=> [(2x - 2) + (2013x - 2012)]2 - (2x - 2)2 + (2x - 2).(2013x - 2012) - (2013x - 2012)2 = 0
<=> 3. (2x - 2).(2013x - 2012) = 0
<=> 2x - 2 = 0 hoặc 2013x - 2012 = 0
<=> x = 1 hoặc x = 2012/2013
Vậy....
Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)
Cộng vế theo vế, ta được:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)
Vậy....
Bài làm
( x - 2014 )3 + ( x + 2012 )3 = 8( x - 1 )3
<=> ( x - 2014 )3 + ( x + 2012 )3 = 23( x - 1 )3
<=> x- 2014 + x + 2012 = 2( x - 1 )
<=> 2x - 2 = 2x - 1
<=> 2x - 2x = 2 - 1
<=> 0x = 1
<=> x = 1 : 0 ( Vô lí )
Vậy pt trên vô nghiệm
<=> x = -4025 : 2
<=> x = 2012,5
Trl
-Bạn ỉn nè làm đúng r nhé !~
Học tốt
nhé bạn ~