Cho tam giác DEF có ba góc nhọn nội tiếp đường tròn (O) với DE < DF và DH là đường cao. Kẻ phân giác góc D cắt (O) tại P. Qua F kẻ tiếp tuyến với (O) cắt EP kéo dài ở K.
a) Chứng minh DP là tia phân giác của góc #Toán lớp 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác DEF có ba góc nhọn nội tiếp đường tròn (O) với DE < DF và DH là đường cao. Kẻ phân giác góc D cắt (O) tại P. Qua F kẻ tiếp tuyến với (O) cắt EP kéo dài ở K.
a) Chứng minh DP là tia phân giác của góc #Toán lớp 9
a) Xét tứ giác KEDC có
\(\widehat{KEC}=\widehat{KDC}\left(=90^0\right)\)
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc cùng nhìn cạnh KC
Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét tứ giác KEDC có
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối
\(\widehat{KEC}+\widehat{KDC}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm của đường tròn này là trung điểm của KC
a) Xét tứ giác KECD có
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối
\(\widehat{KEC}+\widehat{KDC}=180^0\)
Do đó: KECD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)