BẠN MAI VẼ TAM GIÁC ABC CÓ AB=4CM,AC=8CM,BC=9CM RỒI ĐO THẤY GÓC A90 ĐỘ VÀ KẾT LUẬN RÀNG TAM GIÁC ABC VUÔNG .ĐIỀU ĐÓ ĐÚNG KHÔNG VÌ SAO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}BC^2=9^2=81\\AC^2+AB^2=8^2+4^2=80\end{matrix}\right.\)
\(\Rightarrow BC^2\ne AB^2+AC^2\) (vì \(81\ne80\))
\(\Rightarrow\) \(\Delta ABC\) không phải là tam giác vuông.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
DO đó: ΔMHC=ΔMKB
c: Ta có: ΔMHC=ΔMKB
nên HC=KB
mà HC<MC
nên KB<MC
1) coi lại đề
2) a) tam giác ABD và tam giác ABC có
góc A=góc A, góc ABD=góc ACB
=> tam giác ABD đồng dạng tam giác ACB (g-g)
b) ta có tam giác ABD đồng dạng tam giác ACB=> AB/AC=AD/AB=> 6/9=AD/6=> AD=(6.6):9=4