K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

Cái này mình ko biết bạn nhé

27 tháng 5 2019

                                    

a.

Do F là điểm thuộc đường trung trực của EC nên FE=FC(1)

Mặt khác \(\Delta FAK=\Delta FAE\left(c.g.c\right)\) vì \(AB=AE,\widehat{BAF}=\widehat{EAF},FA\) là cạnh chung.

\(\Rightarrow FB=FE\left(2\right)\)

Từ  \(\left(1\right);\left(2\right)\) thì theo tính chất bắc cầu ta có ĐPCM.

b.

Do \(AB=AE;\widehat{BAE}=90^0\Rightarrow\Delta BAE\) vuông cân tại A.

\(\Rightarrow\widehat{AEB}=45^0\Rightarrow\widehat{BEC}=135^0\)

Áp dụng định lý tổng 3 góc trong một tam giác,ta có:

\(\widehat{BEC}+\widehat{BCE}+\widehat{ECB}=180^0\)

\(\Rightarrow\widehat{EBC}=180^0-30^0-135^0=15^0\)
Hạ \(FK\perp AB\),FH là đường trung trực của AC.

Dễ thấy tứ giác KFHA là hình vuông nên FK=FH.

Xét \(\Delta FBK\) và \(\Delta FCH\) có:

\(FC=FB\)

\(FH=FK\)

\(\Rightarrow\Delta FBK=\Delta FCH\left(ch.cgv\right)\Rightarrow\widehat{KFB}=\widehat{HFC}\)

Mà \(\widehat{KFB}+\widehat{BFE}+\widehat{EFH}=90^0\)

\(\Rightarrow\widehat{HFC}+\widehat{BFE}+\widehat{EFH}=90^0\)

\(\Rightarrow\widehat{BFC}\) vuông cân tại F

\(\Rightarrow\widehat{CBF}=45^0\Rightarrow\widehat{EBF}=60^0\)

Tam giác FBE cân tại F có một góc bằng  \(60^0\) nên tam giác đó là tam giác đều.

27 tháng 5 2019

khó vậy

hi 

n

31 tháng 7 2018

B A E C F

F thuộc tia trung trực của CE 

=> FE = FC   (1)

Xét tam giác BAF và tam giác EAF có:

AB = AE

góc BAE = góc EAF

AF:  chung

suy ra: tgiac BAF = tgiac EAF

=> BF = EF  (2)

Từ (1) và (2) suy ra:  FB = FC

hay tgiac BFC cân tại F

a: Xét ΔAOB và ΔCOE có

OB=OE

OA=OC

AB=CE

=>ΔAOB=ΔCOE

b: góc OAB=góc OCE

=>góc OAB=góc OAC

=>AO là phân giác của góc BAC

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
24 tháng 5 2021

a)xét ΔABE và ΔADE có:

AE là cạnh chung

\(\widehat{DAE}=\widehat{BAE}\)(AE là tia phân giác của \(\widehat{BAD}\))

AD=AB(gt)

⇒ ΔABE=ΔADE(c-g-c)

b)gọi I là giao điểm của AE và BD ta được:

xét ΔADI và ΔABI có:

AI là cạnh chung

\(\widehat{DAI}=\widehat{BAI}\)(AI là tia phân giác của \(\widehat{BAD}\))

AD=AB(gt)

⇒ΔADI=ΔABI(c-g-c)

.ID=IB(2 cạnh tương ứng)(1)

    .\(\widehat{DIA}=\widehat{BIA}\)(2 góc tương ứng)(2)

Mà \(\widehat{DIA}+\widehat{BIA}=180^o\)(2 góc kề bù)(3)

Từ (2) và (3) ⇒\(\widehat{DIA}=\widehat{BIA}=\dfrac{180^o}{2}=90^o\)(4)

Từ (1) và (4) ⇒AE là trung trực của BD(đ.p.c.m)

c)xét ΔEBF có:EF là cạnh huyền⇒EF>EB

Mà DE=BE

⇒DE<EF(đ.p.cm)

d)ta có:

vì ΔABE=ΔADE ⇒\(\widehat{EBA}=\widehat{EDA}=90^o\)

xét ΔCDE và ΔFBE có:

\(\widehat{EBF}=\widehat{EDC}=90^o\)

\(\widehat{CED}=\widehat{FEB}\)(2 góc đối đỉnh)

ED=EB( ΔABE=ΔADE)

⇒ ΔCDE=ΔFBE(g-c-g)

⇒CE=EF(2 cạnh tương ứng)

⇒ΔCEF cân tại E

\(\widehat{CFE}=\dfrac{180^o-\widehat{CEF}}{2}\)

vì ΔABE=ΔADE⇒ED=EB(2 cạnh tương ứng)

⇒ΔEDB cân tại E

\(\widehat{EDB}=\dfrac{180^o-\widehat{DEB}}{2}\)

Mà \(\widehat{DEB}=\widehat{CEF}\)(2 góc đối đỉnh)

\(\widehat{CFE}=\widehat{BDE}\)

⇒CF//BD

Mà AG⊥BD

⇒AG⊥CF(đ.p.cm)