cho abc=1. rút gọn
N=a/ab+a+1 +b/bc+b+1 +c/ac+c+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ac+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
Ta có:
\(N=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{c}{c\left(a+1+ab\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}\)
\(=\frac{a+ab+1}{ab+a+1}=1\)
Vậy N = 1
\(\frac{a}{ab}+a+1+\frac{b}{bc}+b+1+\frac{c}{ca}+c+1\)
\(=\frac{1}{b}+a+1+\frac{1}{c}+b+1+\frac{1}{c}+c+1\)
\(=3+a+b+c+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}\)
\(=3+\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\)
\(...............................................................\)
\(A=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)
\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)
\(=\frac{a}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(bc+b+1\right)}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}=1\)
Lời giải:
Vì $a+b+c=1$ nên:
\(a^2+b^2+abc-1=(a+b)^2-2ab+abc-1\)
\(=(a+b)^2-1+ab(c-2)=(1-c)^2-1+ab(c-2)\)
\(=-c(2-c)+ab(c-2)=c(c-2)+ab(c-2)=(c+ab)(c-2)\)
Do đó:
\(\frac{c+ab}{a^2+b^2+abc-1}=\frac{c+ab}{(c+ab)(c-2)}=\frac{1}{c-2}\)
Hoàn toàn tương tự với các phân thức còn lại, suy ra:
\(\frac{c+ab}{a^2+b^2+abc-1}+\frac{a+bc}{b^2+c^2+abc-1}+\frac{b+ac}{a^2+c^2+abc-1}=\frac{1}{c-2}+\frac{1}{a-2}+\frac{1}{b-2}=\frac{(a-2)(b-2)+(b-2)(c-2)+(c-2)(a-2)}{(a-2)(b-2)(c-2)}\)
\(=\frac{ab+bc+ac-4(a+b+c)+12}{(a-2)(b-2)(c-2)}=\frac{ab+bc+ac+8}{(a-2)(b-2)(c-2)}\)
Ta có đpcm.
a/(ab+a+1) + ab/(abc+ab+a)+abc/(ab.ac+ab.c+ab.1)
=a/(ab+a+1)+ab/(1+a+ab)+1/(a+1+ab)=tự tính đi vì chung mẫu rồi