Đường thẳng 6x+5y=30 tạo với các trục tọa độ một Tam giác có diện tích bằng bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao của đường thẳng và trục Ox là A => A(m+1;0)
=> OA = | m+1 |
Gọi giao của đường thẳng với trục Oy là B => B(0 ; m+1)
=> OB=|m+1|
Theo đề bài ta có S ABC =8
<=> 1/2 x OA x OB= 8
<=> 1/2 x |m+1| x |m+1| = 8
từ đó giải ra m=3
#HT#
+ Giao điểm của đồ thị hàm số y= 2x-3 với trục hoành là điểm A( 3/2; 0).
+ Giao điểm của đồ thị hàm số y= 2x-3 với trục tung là điểm B( 0; -3).
+ Đường thẳng ∆ tạo với hai trục tọa độ ∆ OAB vuông tại O. Suy ra
Chọn B.
Gọi A và B lần lượt là giao điểm của d với Ox và Oy
\(\Rightarrow A\left(-\dfrac{1}{m^2+2};0\right)\) ; \(B\left(0;1\right)\) \(\Rightarrow OA=\dfrac{1}{m^2+2}\) ; \(OB=1\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{8}\Leftrightarrow OA.OB=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{m^2+2}=\dfrac{1}{4}\Rightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)