K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

a) \(\frac{2x^3+x^2+x+6}{x^2-x+2}=\frac{\left(2x+3\right)\left(x^2-x+2\right)}{x^2-x+2}=2x+3\)

b) \(\frac{x}{x-3}-\frac{5x^2+27}{x^2-9}+\frac{x-9}{x+3}\)

\(=\frac{x}{x-3}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{x-9}{x+3}\)

\(=\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-9\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-12x+27}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x^2+3x-\left(5x^2+27\right)+x^3-12x+27}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-3x^2-9x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-3x}{x-3}\)

12 tháng 8 2020

a, \(3x\left(x^3-2x\right)=3x^4-6x^2\)

b, \(\frac{4y^3}{7x^2}.\frac{14x^3}{y}=\frac{56x^3y^3}{7x^2y}\)tự chia nhé

c, \(\frac{x^2-9}{2x+6}:\frac{3-x}{2}=\frac{x^2-9}{2x+6}.\frac{2}{3-x}=\frac{2x^2-18}{6x-2x^2+18-6x}=\frac{2x^2-18}{-2x^2+18}=1\)

2 tháng 8 2023

a) \(\dfrac{3}{4xy}+\dfrac{5x}{2x^2z}+\dfrac{7}{6yz^2}\) (MSC: \(12x^2yz^2\))

\(=\dfrac{3\cdot3xz^2}{4xy\cdot3xz^2}+\dfrac{5x\cdot6yz}{2x^2z\cdot6yz}+\dfrac{7\cdot2x^2}{6yz^2\cdot2x^2}\)

\(=\dfrac{9xz^2}{12x^2yz^2}+\dfrac{30xyz}{12x^2yz^2}+\dfrac{14x^2}{12x^2yz^2}\)

\(=\dfrac{9xz^2+30xyz+14x^2}{12x^2yz^2}\)

\(=\dfrac{x\left(9z^2+30yz+14x\right)}{12x^2yz^2}\)

\(=\dfrac{9z^2+30yz+14x}{12x^2yz^2}\)

b) \(\dfrac{x^2}{x^2+3x}+\dfrac{3}{x+3}+\dfrac{3}{x}\)

\(=\dfrac{x^2}{x\left(x+3\right)}+\dfrac{3}{x+3}+\dfrac{3}{x}\)

\(=\dfrac{x}{x+3}+\dfrac{3}{x+3}+\dfrac{3}{x}\)

\(=\dfrac{x+3}{x+3}+\dfrac{3}{x}\)

\(=1+\dfrac{3}{x}\)

\(=\dfrac{x}{x}+\dfrac{3}{x}\)

\(=\dfrac{x+3}{x}\)

a: \(=\dfrac{3\cdot3\cdot xz^2+5x\cdot6\cdot y+7\cdot x^2\cdot2}{12x^2yz^2}=\dfrac{9xz^2+30xy+14x^2}{12x^2yz^2}\)

\(=\dfrac{9z^2+30y+14x}{12xyz^2}\)

b: \(=\dfrac{x}{x+3}+\dfrac{3}{x+3}+\dfrac{3}{x}=1+\dfrac{3}{x}=\dfrac{x+3}{x}\)

\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)

\(x\left(x+1\right)+x\left(x-3\right)=4x\)

\(x^2+x+x^2-3x=4x\)

\(2x^2-2x=4x\)

\(2x^2-2x-4x=0\)

\(2x\left(x-3\right)=0\)

\(2x=0\Leftrightarrow x=0\)

hoặc 

\(x-3=0\Leftrightarrow x=3\)

22 tháng 4 2020

b) \(ĐKXĐ:x\ne\pm4\)

\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)

\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)

\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)

\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)

\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)

\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )

Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)

31 tháng 3 2020

Làmmmm

1/ \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)(ĐKXĐ:x\(\ne0\), x\(\ne\frac{1}{2}\))

= \(\frac{\left(1-2x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\frac{4x^2}{\left(2x-1\right)2x}-\frac{1}{2x\left(2x-1\right)}\)

\(=\frac{2x-1-4x^2+2x+4x^2-1}{2x\left(2x-1\right)}\)

\(=\frac{4x-2}{2x\left(2x-1\right)}=\frac{2\left(2x-1\right)}{2x\left(2x-1\right)}=\frac{1}{x}\)

KL:..............

31 tháng 3 2020

2/\(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}\)(ĐKXĐ : x\(\ne1\))

\(=\frac{x^2+2}{x^3-1}+\frac{2x-2}{x^3-1}-\frac{x^2+x+1}{x^3-1}\)

\(=\frac{x^2+2+2x-2-x^2-x-1}{x^3-1}=\frac{x-1}{x^3-1}=\frac{1}{x^2+x+1}\)

Kl:....................

11 tháng 12 2019

\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)

\(=\frac{-2}{x^2}\)

\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)

\(=x\left(x-3\right)\)

\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)

\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+3}{x+1}\)

# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha

1 tháng 12 2016

\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right)\times\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)

\(=\left[\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right]\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{\left(x^2-x+1\right)-3+3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2-x+1-3+3x+3}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{3\left(x+1\right)^2}{\left(x+1\right)\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{3x}{x\left(x+2\right)}-\frac{2x-2}{x\left(x+2\right)}\)

\(=\frac{3x-2x+2}{x\left(x+2\right)}\)

\(=\frac{x+2}{x\left(x+2\right)}\)

\(=\frac{1}{x}\)

Bài 1:

a) Ta có: \(\left(12x^3-28x^2+21x-5\right):\left(6x-5\right)-\left(2x^2-4x\right)\)

\(=\left(12x^3-10x^2-18x^2+15x+6x-5\right):\left(6x-5\right)-\left(2x^2-4x\right)\)

\(=\frac{2x^2\left(6x-5\right)-3x\left(6x-5\right)+\left(6x-5\right)}{6x-5}-2x^2+4x\)

\(=\frac{\left(6x-5\right)\left(2x^2-3x+1\right)}{6x-5}-2x^2+4x\)

\(=2x^2-3x+1-2x^2+4x\)

\(=x+1\)

b) Ta có: \(\left(\frac{x+1}{x-3}+\frac{5x-39}{x^2-9}-\frac{11}{x+3}\right):\frac{x^2+2x+1}{2x+6}\)

\(=\left(\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{5x-39}{\left(x-3\right)\left(x+3\right)}-\frac{11\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{2\left(x+3\right)}{\left(x+1\right)^2}\)

\(=\frac{x^2+4x+3+5x-39-11x+33}{\left(x+3\right)\left(x-3\right)}\cdot\frac{2\left(x+3\right)}{\left(x+1\right)^2}\)

\(=\frac{x^2-2x-3}{x-3}\cdot\frac{2}{\left(x+1\right)^2}\)

\(=\frac{x^2-3x+x-3}{x-3}\cdot\frac{2}{\left(x+1\right)^2}\)

\(=\frac{x\left(x-3\right)+\left(x-3\right)}{\left(x-3\right)}\cdot\frac{2}{\left(x+1\right)^2}\)

\(=\frac{\left(x-3\right)\left(x+1\right)\cdot2}{\left(x-3\right)\left(x+1\right)^2}\)

\(=\frac{2}{x+1}\)