Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2x - 1)(3x + 5) - 2(-4x + 1)2 = 6x2 + 10x - 3x - 5 - 2(16x2 - 8x + 1) = 6x2 - 3x - 5 - 32x2 + 16x - 2 = -26x2 + 13x - 7
b) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x-4\right)\left(x+4\right)}{-x\left(x-4\right)}=-\frac{x+4}{x}\)
c) \(\frac{2x-9}{x^2-5x+6}+\frac{2x+1}{x-3}+\frac{x+3}{2-x}\)
= \(\frac{2x-9}{x^2-2x-3x+6}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{2x-9+2x^2-3x-2-x^2+9}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{x^2-2x+x-2}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\frac{x+1}{x-3}\)
d) (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)
= (x - 1 - x - 1)[(x - 1)2 + (x - 1)(x + 1) + (x + 1)2] + 6(x2 - 1)
= -2(x2 - 2x + 1 + x2 - 1 + x2 + 2x + 1) + 6x2 - 6
= -2(3x2 + 1) + 6x2 - 6
= -6x2 - 2 + 6x2 - 6
= -8
e) (2x + 7)2 - (4x + 14)(2x - 8) + (8 - 2x)2
= (2x + 7)2 - 2(2x + 7)(2x - 8) + (2x - 8)2
= (2x + 7 - 2x + 8)2
= 152 = 225
\(2.A=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\\ Thayx=\frac{1}{2};y=-100vàoAđược:A=-2.\frac{1}{2}.\left(-100\right)=100\)
\(3.x\left(5-2x\right)+2x\left(x-1\right)=15\Leftrightarrow5x-2x^2+2x^2-2x=15\Leftrightarrow3x=15\Leftrightarrow x=5\)
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
a) = 2 * x^5 - x^4 - 7 / 2x^2
b) = 15x^5 - 12x^4 + 18x^2 - 5/4 x^4 + x^3 - 3/2 x = 15 x^5 - 53/4x^4 + x^3 + 18 x^2 - 3/2x
mk đang bị âm bạn jup mk nha
câu 1:
\(a,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
=> \(25x^2+10x+1-\left(25x^2-9\right)=30\)
=> \(25x^2+10x+1-25x^2+9=30\)
=> \(10x+10=30\)
=> \(10x=20\)
=> \(x=2\)
Vậy..........
\(b,\left(2x+3\right)^2-\left(2x-3\right)^2+4\left(x^2-6x\right)=64\)
=> \(6.4x+4x^2-24x=64\)
=> \(24x+4x^2-24x=64\)
=> \(4x^2=64\)
=> \(x^2=64:4=16\)
=> \(\left|x\right|=\sqrt{16}\)
=> \(x=\pm4\)
Vậy \(x\in\left\{4;-4\right\}\)
a) \(\frac{2x^3+x^2+x+6}{x^2-x+2}=\frac{\left(2x+3\right)\left(x^2-x+2\right)}{x^2-x+2}=2x+3\)
b) \(\frac{x}{x-3}-\frac{5x^2+27}{x^2-9}+\frac{x-9}{x+3}\)
\(=\frac{x}{x-3}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{x-9}{x+3}\)
\(=\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-9\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-12x+27}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x^2+3x-\left(5x^2+27\right)+x^3-12x+27}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-3x^2-9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-3x}{x-3}\)