Tìm tất cả các số nguyên x: (x+3)là bội của ( x2 -7 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)
Do \(\left(x-2y\right)^2\ge0;\forall x;y\)
\(\Rightarrow\left(x-2\right)^2\le8\)
\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)
TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)
\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)
TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên
TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):
- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)
Vậy pt có các cặp nghiệm là:
\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)
b.
\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)
\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)
Lý luận tương tự câu a ta được
\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)
Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn
Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)
- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)
- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)
có nghĩa là 2x + 3 chia hết cho x -2
=> 2x - 4 + 7 chia hết cho x -2
=> 2( x - 2) + 7 chia hết cho x -2
do 2(x-2) chia hết cho x -2
=> 7 chia hết cho x -2
=> x-2 thuộc ước của 7
sau đó lập bảng để tìm x( nhé kiểm tra điều kiện x nguyên nhé)
2x+3=2x-4+7=2(x-2)+7
\(\Rightarrow x-2\inƯ\left(7\right) \)
\(\Rightarrow x-2\in\left\{-1;1;7;-7\right\}\)
\(\Rightarrow x\in\left\{1;3;9;-5\right\}\)
a, x + 2 chia hết cho x^2 - 7
=> (x + 2)(x - 2) chia hết cho x^2 - 7
=> x^2 - 4 chia hết cho x^2 - 7
=> x^2 - 7 + 3 chia hết cho x^2 - 7
=> 3 chia hết cho x^2 - 7
=> x^2 - 7 thuộc Ư(3)
=> x^2 - 7 thuộc {-1; 1; -3; 3}
=> x^2 thuộc {6; 8; 4; 10}
mà x là số nguyên
=> x = 2 hoặc x = -2
Bài 15. a) Tìm sáu bội của 6 ; b) Tìm các bội nhỏ hơn 30 của 7.
a) 6 bội của 6 là : {0 ; 6 ; 12 ; 18 ; 24 ; 30}
b) bội nhỏ hơn 30 của 7 là : {0 ; 7 ; 14 ; 21 ; 28}
Bài 16. a) Tìm tất cả các ước của 36 ; b) Tìm các ước lớn hơn 10 của 100
a) Ư(36) = {1 ; 2 ; 3 ; 4 ;6 ; 9 ; 12 ; 18}
b) Ư(100) = {20 ; 25 ; 50}
Bài 17. Tìm số tự nhiên x , biết a) x là bội của 11 và 10 x 50 . b) x vừa là bội của 25 vừa là ước của 150.
a) vậy x E BC(11 và 500) vì 11 và 500 nguyên tố cùng nhau nên BC(11 ; 500) = 500 x 11 = 5500
vậy x \(⋮\)25 và 150 \(⋮\)x B(25) = {0 ; 25 ; 50 ; 75 ; 100 ; 125 ; 150 ; 175...}
Ư(150) = {1 ; 2 ; 3 ; 5 ; 6 ; 10 ; 15 ; 25 ; 30 ; 50 ; 75 ; 150} => a = (25 ; 50 ; 75)
Bài 18. Trong các số: 4827,5670,6915,2007 , số nào: a) chia hết cho 2 ? b) chia hết cho 3 ? c) chia hết cho 5 ? d) chia hết cho 9 ?
a) chia hết cho 2 là : 5670
b) chia hết cho 3 là : 2007 ; 6915 ; 5670 ; 4827
c) chia hết cho 5 là : 5670 ; 6915
d) chia hết cho 9 là : 2007 ;
Bài 19. Trong các số sau: 0,12,17,23,110,53,63,31 , số nào là số nguyên tố?
SNT là : 17 ; 23 ; 53 ; 31
Bài 20. Thay dấu * bằng chữ số thích hợp để mỗi số sau là số nguyên tố: a) 4* b) 7*, c) * d) 2*1
4* = 41 ; 43 ; 47
7* = 71 ; 73 ; 79
* = 2 ; 3 ; 5 ; 7
2*1 ; 221 ; 211 ; 251 ; 271
Bài 21. Thay dấu * bằng chữ số thích hợp để mỗi số sau là hợp số: a) 1* ; b) * 10 c) *1 d) *73.
1* = 11 ; 13 ; 17 ; 19
*10 = ???
*1 = 11 ; 31 ; 41 ; 61 ; 71 ; 91
*73 = 173 ; 373 ; 473 ; 673 ; 773 ; 973
\(\left(x+3\right)\text{ là bội của }\left(x^2-7\right)\Rightarrow x^2+3x⋮x^2-7\Leftrightarrow3x+7⋮x^2-7\Rightarrow3x+9-3x-7⋮x^2-7\)
\(\Leftrightarrow2⋮x^2-7\Leftrightarrow\left(x^2-7\right)\inƯ\left(2\right)=\left\{-1;1;-2;2\right\}\Leftrightarrow x^2\in\left\{9;6;5;8\right\}\Rightarrow x^2=9\left(\text{vì x nguyên}\right)\)
\(\Leftrightarrow x=3\text{ hoặc }x=-3\)
Trl
-Bạn kia làm đúng rồi !~
Học tốt
nhé bạn :>